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Overview

The Subject of This Textbook Before starting with the content of the text, we
first ask the basic question: what is linear algebra?

• Linear: having to do with lines, planes, etc.

• Algebra: solving equations involving unknowns.

The name of the textbook highlights an important theme: the synthesis between
algebra and geometry. It will be very important to us to understand systems of
linear equations both algebraically (writing equations for their solutions) and geo-
metrically (drawing pictures and visualizing).

Remark. The term “algebra” was coined by the 9th century mathematician Abu
Ja’far Muhammad ibn Musa al-Khwarizmi. It comes from the Arabic word al-jebr,
meaning reunion of broken parts.

At the simplest level, solving a system of linear equations is not very hard. You
probably learned in high school how to solve a system like

( x + 3y − z = 4
2x − y + 3z = 17

y − 4z = −3.

However, in real life one usually has to be more clever.

• Engineers need to solve many, many equations in many, many variables.
Here is a tiny example:











3x1 + 4x2 + 10x3 + 19x4 − 2x5 − 3x6 = 141
7x1 + 2x2 − 13x3 − 7x4 + 21x5 + 8x6 = 2567
−x1 + 9x2 +

3
2 x3 + x4 + 14x5 + 27x6 = 26

1
2 x1 + 4x2 + 10x3 + 11x4 + 2x5 + x6 = −15.

• Often it is enough to know some information about the set of solutions,
without having to solve the equations in the first place. For instance, does
there exist a solution? What does the solution set look like geometrically?
Is there still a solution if we change the 26 to a 27?

ix
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• Sometimes the coefficients also contain parameters, like the eigenvalue equa-
tion

( (7−λ)x + y + 3z = 0
−3x + (2−λ)y − 3z = 0
−3x − 2y + (−1−λ)z = 0.

• In data modeling, a system of equations generally does not actually have a
solution. In that case, what is the best approximate solution?

Accordingly, this text is organized into three main sections.

1. Solve the matrix equation Ax = b (chapters 2–4).

• Solve systems of linear equations using matrices, row reduction, and
inverses.

• Analyze systems of linear equations geometrically using the geometry
of solution sets and linear transformations.

2. Solve the matrix equation Ax = λx (chapters 5–7).

• Solve eigenvalue problems using the characteristic polynomial.

• Understand the geometry of matrices using similarity, eigenvalues, di-
agonalization, and complex numbers.

3. Approximately solve the matrix equation Ax = b (chapter 8).

• Find best-fit solutions to systems of linear equations that have no actual
solution using least-squares approximations.

• Study the geometry of closest vectors and orthogonal projections.

This text is roughly half computational and half conceptual in nature. The
main goal is to present a library of linear algebra tools, and more importantly, to
teach a conceptual framework for understanding which tools should be applied in
a given context.

If a computer can find the answer faster than you can, then the question is
just to use the right algorithm. We won’t go very much into this in this course;
that’s the subject of scientific computing/numerical analysis, in general, and
numerical linear algebra, in particular.

Although numerical linear algebra is an important topic, for applications, the
real part of the problem lies in understanding what computation to ask the computer
to do for you—it is far less important to know how to do computations by hand
that a computer can do better anyway.
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Uses of Linear Algebra in Engineering The vast majority of STEM students have
to take a course in linear algebra. There is a reason for this:

Most engineering problems, no matter how complicated, can be reduced to
linear algebra:

Ax = b or Ax = λx or Ax ≈ b.

Here we present some sample problems in science and engineering that require
linear algebra to solve.

Example (Civil Engineering). The following diagram represents traffic flow around
the town square. The streets are all one way, and the numbers and arrows indi-
cate the number of cars per hour flowing along each street, as measured by sensors
underneath the roads.

Traffic flow (cars/hr)

x

y

z

w

120

250

70

120

530

390

175

115

There are no sensors underneath some of the streets, so we do not know how
much traffic is flowing around the square itself. What are the values of x , y, z, w?
Since the number of cars entering each intersection has to equal the number of
cars leaving that intersection, we obtain a system of linear equations:











w + 120 = x + 250
x + 120 = y + 70
y + 530 = z + 390
z + 115 = w + 175.
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Example (Chemical Engineering). A certain chemical reaction (burning) takes
ethane and oxygen, and produces carbon dioxide and water:

x C2H6 + y O2 → z CO2 + w H2O

What ratio of the molecules is needed to sustain the reaction? The following
three equations come from the fact that the number of atoms of carbon, hydro-
gen, and oxygen on the left side has to equal the number of atoms on the right,
respectively:

2x = z
6x = 2w
2y = 2z +w.

Example (Biology). In a population of rabbits,

1. half of the newborn rabbits survive their first year;

2. of those, half survive their second year;

3. the maximum life span is three years;

4. rabbits produce 0, 6, 8 baby rabbits in their first, second, and third years,
respectively.

If you know the rabbit population in 2016 (in terms of the number of first, sec-
ond, and third year rabbits), then what is the population in 2017? The rules for
reproduction lead to the following system of equations, where x , y, z represent the
number of newborn, first-year, and second-year rabbits, respectively:







6y2016 + 8z2016 = x2017
1
2 x2016 = y2017

1
2 y2016 = z2017.

A common question is: what is the asymptotic behavior of this system? What will
the rabbit population look like in 100 years? This turns out to be an eigenvalue
problem.

Use this link to view the online demo

Left: the population of rabbits in a given year. Right: the proportions of rabbits in
that year. Choose any values you like for the starting population, and click “Advance
1 year” several times. What do you notice about the long-term behavior of the ratios?
This phenomenon turns out to be due to eigenvectors.

https://ulrikbuchholtz.dk/ila/demos/rabbits.html
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Example (Astronomy). An asteroid has been observed at the following locations:

(0,2), (2,1), (1,−1), (−1,−2), (−3, 1), (−1,−1).

Its orbit around the sun is elliptical; it is described by an equation of the form

x2 + B y2 + C x y + Dx + E y + F = 0.

What is the most likely orbit of the asteroid, given that there was some signifi-
cant error in measuring its position? Substituting the data points into the above
equation yields the system

(0)2 + B(2)2 + C(0)(2) + D(0) + E(2) + F = 0
(2)2 + B(1)2 + C(2)(1) + D(2) + E(1) + F = 0
(1)2 + B(−1)2 + C(1)(−1) + D(1) + E(−1) + F = 0
(−1)2 + B(−2)2 + C(−1)(−2) + D(−1) + E(−2) + F = 0
(−3)2 + B(1)2 + C(−3)(1) + D(−3) + E(1) + F = 0
(−1)2 + B(−1)2 + C(−1)(−1) + D(−1) + E(−1) + F = 0.

There is no actual solution to this system due to measurement error, but here is
the best-fitting ellipse:

(0,2)

(2, 1)

(1,−1)

(−1,−2)

(−3, 1)
(−1,1)

266x2 + 405y2 − 178x y + 402x − 123y − 1374= 0

Example (Computer Science). Each web page has some measure of importance,
which it shares via outgoing links to other pages. This leads to zillions of equations
in zillions of variables. Larry Page and Sergei Brin realized that this is a linear
algebra problem at its core, and used the insight to found Google. We will discuss
this example in detail in Section 7.4.
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Example (Machine Learning and Data Science). Most models and algorithms in
machine learning and data science rely heavily on linear algebra. In particular,
convolutional neural networks rely on linear operations called convolutions applied
to higher-dimensional versions of matrices called tensors, interspersed with (typ-
ically non-linear) activation functions. As such, linear algebra is a foundational
tool in this active area.

How to Use This Textbook There are a number of different categories of ideas
that are contained in most sections. They are listed at the top of the section, under
Objectives, for easy review. We classify them as follows.

• Recipes: these are algorithms that are generally straightforward (if some-
times tedious), and are usually done by computer in real life. They are
nonetheless important to learn and to practise.

• Vocabulary: forming a conceptual understanding of the subject of linear alge-
bra means being able to communicate much more precisely than in ordinary
speech. The vocabulary have precise definitions, which must be learned and
used correctly.

• Essential Vocabulary: these vocabulary are essential in that they form the
essence of the subject of linear algebra. For instance, if you do not know the
definition of an eigenvector, then by definition you cannot claim to under-
stand linear algebra.

• Theorems: these describe in a precise way how the objects of interest relate
to each other. Knowing which recipe to use in a given situation generally
means recognizing which vocabulary to use to describe the situation, and
understanding which theorems apply to that problem.

• Pictures: visualizing the geometry underlying the algebra means interpreting
and drawing pictures of the objects involved. The pictures are meant to be
a core part of the material in the text: they are not just a pretty add-on.

This textbook is exclusively targeted at COMP1043, Mathematics for Computer
Scientists 2, at the University of Nottingham. As such, it contains exactly the ma-
terial that is taught in that class; no more, and no less: students in COMP1043 are
responsible for understanding all visible content. In the online version some extra
material (most examples and proofs, for instance) is hidden, in that one needs to
click on a link to reveal it, like this:

Hidden Content. Hidden content is meant to enrich your understanding of the
topic, but is not an official part of COMP1043. That said, the text will be very
hard to follow without understanding the examples, and studying the proofs is an
excellent way to learn the conceptual part of the material. (Not applicable to the
PDF version.)
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Finally, we remark that there are over 140 interactive demos contained in the
text, which were created to illustrate the geometry of the topic. Click the “view in
a new window” link, and play around with them! You will need a modern browser.
Internet Explorer is not a modern browser; try Safari, Chrome, or Firefox. Here is
a demo from Section 8.5:

Use this link to view the online demo

Click and drag the points on the grid on the right.

Feedback Every page of the online version has a link on the bottom for providing
feedback. This will take you to the GitHub Issues page for this book.

https://www.google.com/chrome/browser/desktop/
https://www.mozilla.org/en-US/firefox/
https://ulrikbuchholtz.dk/ila/demos/bestfit-implicit.html?func=x^2+A*y^2+B*x*y+C*x+D*y+EE&v1=0,2&v2=2,1&v3=1,-1&v4=-1,-2&v5=-3,1&v6=-1,1&range=5&rangez=25&camera1=-2.14,.814,1.69
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Chapter 1

Vectors: Algebra and Geometry

Primary Goals. The language of vectors is convenient for doing linear algebra.
In this chapter, you should learn:

1. What vectors are, and how to do algebra and geometry with vectors;

2. What it means to be a linear combination of given vectors;

3. The concept of the span of some vectors, i.e., the set of all linear combina-
tions of these vectors.

Linear algebra is the study of one or more linear equations, that is, equations
that look like

2x + 3y + 5z = 1.

The basic case of one linear equation in one variable, such as 2x = 5, is not very
interesting. We know that there is a unique solution, and we know how to find
it: x = 5/2 = 2.5. The complications in linear algebra arise because we consider
several simultaneous equations in several variables, for instance











3x1 + 4x2 + 10x3 + 19x4 − 2x5 − 3x6 = 141
7x1 + 2x2 − 13x3 − 7x4 + 21x5 + 8x6 = 2567
−x1 + 9x2 +

3
2 x3 + x4 + 14x5 + 27x6 = 26

1
2 x1 + 4x2 + 10x3 + 11x4 + 2x5 + x6 = −15.

In order to discuss systems of equations like this, it will be convenient for us
to have notation for keeping track of multiple numbers at once. Vectors provide
us with this notation. In the case of vectors with 2 or 3 entries, there is a strong
connection between vector algebra and geometry. This can be very helpful to us
as we develop an intuition for vector algebra, even when there are more than 3
entries. (Some applications of linear algebra involve millions of entries.)

1.1 Vectors

Objectives

1



2 CHAPTER 1. VECTORS: ALGEBRA AND GEOMETRY

1. Learn how to add and scale vectors in Rn, both algebraically and geometri-
cally.

2. Understand linear combinations geometrically.

3. Pictures: vector addition, vector subtraction, linear combinations.

4. Vocabulary words: vector, linear combination.

1.1.1 Vectors in Rn

We use R to denote the set of all real numbers, i.e., the number line. This contains
numbers like 0, 3

2 ,−π, 104, . . .

Definition. Let n ∈ N be a natural number. We define

Rn = the set of all ordered n-tuples of real numbers (x1, x2, x3, . . . , xn).

An n-tuple of real numbers is called a point of Rn.

In other words, Rn is just the set of all (ordered) lists of n real numbers. We
will draw pictures of Rn in a moment, but keep in mind that this is the definition.
For example, (0, 3

2 ,−π) and (1,−2,3) are points of R3.

Example (The number line). When n= 1, we just get R back: R1 = R. Geometri-
cally, this is the number line.

−3 −2 −1 0 1 2 3

In any Rn, the point corresponding to the n-tuple (0, 0, . . . , 0) is special. We
call it the origin.

The trivial case. Recall that zero is a natural number, so we also have the case
n = 0 giving the set R0 = {()} consisting only of the empty tuple. Since all the
entries in the empty tuple are zero, this is in fact the origin of R0.
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1.1.2 Vectors and geometry

The elements of Rn are lists of n numbers. When n is 2 or 3, we can represent
these lists geometrically in two ways.

Example (The Euclidean plane). When n= 2, we can think of R2 as the x y-plane.
We can do so because every point on the plane can be represented by an ordered
pair of real numbers, namely, its x- and y-coordinates.

(1,2)

(0,−3)

Example (3-Space). When n = 3, we can think of R3 as the space we (appear
to) live in. We can do so because every point in space can be represented by an
ordered triple of real numebrs, namely, its x-, y-, and z-coordinates.

(1,−1,3)
(−2,2, 2)
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Of course, to get this representation we have to pick a point to be the origin,
as well as three mutually orthogonal directions.

Interactive: Points in 3-Space.

Use this link to view the online demo

A point in 3-space, and its coordinates. Click and drag the point, or move the sliders.

Vectors and Points. A vector is an element of Rn, especially when drawn as an
arrow.

the vector
�1

3

�

The difference is purely psychological: points and vectors are both just repre-
sentations of lists of numbers.

Interactive: A vector in R3, by coordinates.

Use this link to view the online demo

A vector in R3, and its coordinates. Drag the arrow head and tail.

Geometrically (in 2- or 3-dimensional space) a vector is determined by its di-
rection and its length.

Example. For instance, these three vectors are all different.

https://ulrikbuchholtz.dk/ila/demos/point.html
https://ulrikbuchholtz.dk/ila/demos/vector.html
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On the other hand, the vectors shown below are all equal, and have coordinates
�

1
2

�

.

Many physical quantities have a direction and magnitude. Common examples
include velocity, momentum, acceleration and force. The language of vectors is
good for describing such quantities.

Note. Another way to think about a vector is as a difference between two points,
or the arrow from one point to another. For instance,

�1
2

�

is the arrow from (1,1)
to (2,3).

(1,1)

(2,3)

�1
2

�

Based vectors. When a vector v is considered as an arrow from the origin to a
point p, we say v is based. In this case, the coordinates of v and p are the same.

Example. In this example, the two vectors and the point all correspond to the
coordinates (1,3). The vectors are equal, but one is based while the other is not.
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(1, 3)

�1
3

�

Even though we can’t draw elements of R4,R5, . . . geometrically, we will still re-
fer to them as points or vectors. We have to rely more on algebra than on geometric
intuition when we work with vectors with more than 3 coordinates.

When we think of an element in Rn as a vector, we will usually write it verti-
cally:

v =
�

1
3

�

.

This is called column vector notation. You can also call the notation (1, 3) row
vector notation, even though it is the same as ordinary point notation.

We will write 0 for the vector of all 0s, corresponding to the origin.

Remark. Some authors use boldface letters to represent vectors, as in “v”, or use
arrows. As it is usually clear from context if a letter represents a vector, we do not
decorate vectors in this way.

So what is R4? or R5? or Rn? These are harder to visualize, so you have to
go back to the definition: Rn is the set of all ordered n-tuples of real numbers
(x1, x2, x3, . . . , xn).

They are still “geometric” spaces, in the sense that our intuition for R2 and R3

often extends to Rn.
We will make definitions and state theorems that apply to any Rn, but we will

only draw pictures for R2 and R3.
The power of using these spaces is the ability to label various objects of interest,

such as geometric objects and solutions of systems of equations, by the points of
Rn.

Example (Color Space). All colors you can see can be described by three quanti-
ties: the amount of red, green, and blue light in that color. (Humans are trichro-
matic.) Therefore, we can use the points of R3 to label all colors: for instance, the
point (.2, .4, .9) labels the color with 20% red, 40% green, and 90% blue intensity.

https://en.wikipedia.org/wiki/Trichromacy
https://en.wikipedia.org/wiki/Trichromacy
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red

bl
ue

green

Example (Traffic Flow). In the Overview, we could have used R4 to label the
amount of traffic (x , y, z, w) passing through four streets. In other words, if there
are 10, 5,3, 11 cars per hour passing through roads x , y, z, w, respectively, then
this can be recorded by the point (10, 5,3, 11) in R4. This is useful from a psycho-
logical standpoint: instead of having four numbers, we are now dealing with just
one piece of data.

x

y

z

w

Example (QR Codes). A QR code is a method of storing data in a grid of black
and white squares in a way that computers can easily read. A typical QR code
is a 29 × 29 grid. Reading each line left-to-right and reading the lines top-to-
bottom (like you read a book) we can think of such a QR code as a sequence of
29 × 29 = 841 digits, each digit being 1 (for white) or 0 (for black). In such a
way, the entire QR code can be regarded as a point in R841. As in the previous
example, it is very useful from a psychological perspective to view a QR code as a
single piece of data in this way.

https://en.wikipedia.org/wiki/QR_code
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The QR code for this textbook is a 29× 29 array of black/white squares.

In the above examples, it was useful from a psychological perspective to replace
a list of four numbers (representing traffic flow) or of 841 numbers (representing a
QR code) by a single piece of data: a point in some Rn. This is a powerful concept;
starting in Section 1.2, we will almost exclusively record solutions of systems of
linear equations in this way.

Remark (Other number systems). In this text we mostly deal with vectors of real
numbers from the set R, except in Section 6.5 where we allow complex numbers,
see Appendix A. Common to both systems of numbers is that they can be added and
multiplied, contain a zero and a one, the usual algebraic laws hold, for instance
(x + y)z = xz+ yz, and every non-zero number x has an inverse x−1 = 1/x . That
is, both the real and complex numbers are examples of fields, and linear algebra
works over any field. Another example of a field is the residues of integers modulo
a prime number p, that is, the set Fp = {0,1, . . . , p−1} under the usual operations
mod p. Of special importance to computer science is the case p=2, which gives a
better representation for codes such as the QR codes above.

1.1.3 Vector Algebra and Geometry

Here we learn how to add vectors together and how to multiply vectors by num-
bers, both algebraically and geometrically.

Vector addition and scalar multiplication.

• We can add two vectors together provided they have the same number of
entries:





a
b
c



+





x
y
z



=





a+ x
b+ y
c + z



 .



1.1. VECTORS 9

• We can multiply, or scale, a vector by a real number c:

c





x
y
z



=





c · x
c · y
c · z



 .

We call c a scalar to distinguish it from a vector. If v is a vector and c is a
scalar, then cv is called a scalar multiple of v.

Addition and scalar multiplication work in the same way for vectors in Rn.

Example.




1
2
3



+





4
5
6



=





5
7
9



 and − 2





1
2
3



=





−2
−4
−6



 .

The Parallelogram Law for Vector Addition Geometrically, the sum of two vec-
tors v, w is obtained as follows: place the tail of w at the head of v. Then v +w is
the vector whose tail is the tail of v and whose head is the head of w. Doing this
both ways creates a parallelogram. For example,

�

1
3

�

+
�

4
2

�

=
�

5
5

�

.

Why? The width of v + w is the sum of the widths, and likewise with the
heights.

v

w

w

v
v +

w

5= 1+ 4= 4+ 1

5
=

2
+

3
=

3
+

2

Interactive: The parallelogram law for vector addition.

Use this link to view the online demo

The parallelogram law for vector addition. Click and drag the heads of v and w.

https://ulrikbuchholtz.dk/ila/demos/vector-add.html
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Vector Subtraction Geometrically, the difference of two vectors v, w is obtained
as follows: place the tail of v and w at the same point. Then v − w is the vector
from the head of w to the head of v. For example,

�

1
4

�

−
�

4
2

�

=
�

−3
2

�

.

Why? If you add v −w to w, you get v.

v

w

v −w

Interactive: Vector subtraction.

Use this link to view the online demo

Vector subtraction. Click and drag the heads of v and w.

Scalar Multiplication A scalar multiple of a vector v has the same (or opposite)
direction, but a different length. For instance, 2v is the vector in the direction of
v but twice as long, and −1

2 v is the vector in the opposite direction of v, but half
as long. Note that the set of all scalar multiples of a (nonzero) vector v is a line.

Some multiples of v.

v

2v

−1
2 v

0v

All multiples of v.

https://ulrikbuchholtz.dk/ila/demos/vector-sub.html
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Interactive: Scalar multiplication.

Use this link to view the online demo

Scalar multiplication. Drag the slider to change the scalar.

1.1.4 Linear Combinations

We can add and scale vectors in the same equation.

Definition. Let c1, c2, . . . , ck be scalars, and let v1, v2, . . . , vk be vectors in Rn. The
vector in Rn

c1v1 + c2v2 + · · ·+ ckvk

is called a linear combination of the vectors v1, v2, . . . , vk, with weights or coef-
ficients c1, c2, . . . , ck.

Geometrically, a linear combination is obtained by stretching / shrinking the
vectors v1, v2, . . . , vk according to the coefficients, then adding them together using
the parallelogram law.

Example. Let v1 =
�1

2

�

and v2 =
�1

0

�

. Here are some linear combinations of v1 and
v2, drawn as points.

v1

v2

• v1 + v2

• v1 − v2

• 2v1 + 0v2

• 2v2

• −v1

The locations of these points are found using the parallelogram law for vector
addition. Any vector on the plane is a linear combination of v1 and v2, with suitable
coefficients.

https://ulrikbuchholtz.dk/ila/demos/vector-mul.html
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Use this link to view the online demo

Linear combinations of two vectors in R2: move the sliders to change the coefficients of
v1 and v2. Note that any vector on the plane can be obtained as a linear combination
of v1, v2 with suitable coefficients.

Interactive: Linear combinations of three vectors.

Use this link to view the online demo

Linear combinations of three vectors: move the sliders to change the coefficients of
v1, v2, v3. Note how the parallelogram law for addition of three vectors is more of a
“parallepiped law”.

Example (Linear Combinations of a Single Vector). A linear combination of a sin-
gle vector v =

�1
2

�

is just a scalar multiple of v. So some examples include

v =
�

1
2

�

,
3
2

v =
�

3/2
3

�

, −
1
2

v =
�

−1/2
−1

�

, . . .

The set of all linear combinations is the line through v. (Unless v = 0, in which
case any scalar multiple of v is again 0.)

v

Example (Linear Combinations of Collinear Vectors). The set of all linear combi-
nations of the vectors

v1 =
�

2
2

�

and v2 =
�

−1
−1

�

is the line containing both vectors.

https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=1,2&v2=1,0&range=5&captions=combo
https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=2,-1,1&v2=1,1,-1&v3=-1,1,4&range=5&captions=combo
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v1

v2

The difference between this and a previous example is that both vectors lie on
the same line. Hence any scalar multiples of v1, v2 lie on that line, as does their
sum.

Interactive: Linear combinations of two collinear vectors.

Use this link to view the online demo

Linear combinations of two collinear vectors in R2. Move the sliders to change the
coefficients of v1, v2. Note that there is no way to “escape” the line.

1.2 Vector Equations and Spans

Objectives

1. Understand the equivalence between a system of linear equations and a vec-
tor equation.

2. Learn the definition of Span{x1, x2, . . . , xk}, and how to draw pictures of
spans.

3. Pictures: an inconsistent system of equations, a consistent system of equa-
tions, spans in R2 and R3.

4. Vocabulary word: vector equation.

5. Essential vocabulary word: span.

https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=2,2&v2=-1,-1&range=5&captions=combo&grid=disabled
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1.2.1 Vector Equations

An equation involving vectors with n coordinates is the same as n equations in-
volving only numbers. For example, the equation

x





1
2
6



+ y





−1
−2
−1



=





8
16

3



 (1.2.1)

simplifies to




x
2x
6x



+





−y
−2y
−y



=





8
16

3



 or

 x − y
2x − 2y
6x − y

!

=





8
16

3



 .

For two vectors to be equal, all of their coordinates must be equal, so this is just
the system of linear equations

( x − y = 8
2x − 2y = 16
6x − y = 3.

Definition. A vector equation is an equation involving a linear combination of
vectors with possibly unknown coefficients.

Asking whether or not a vector equation has a solution is the same as asking
if a given vector is a linear combination of some other given vectors.

For example the vector equation above is asking if the vector (8,16, 3) is a
linear combination of the vectors (1, 2,6) and (−1, 2,−1).

Example. Consider the vector equation

x







1
1
1
2






+ y







0
1
1
0






+ z







0
0
1
−1






=







3
−2

4
0






.

Can you find all solutions to this equation? That is, all possible values for numbers
x , y, z that make the equation true?

Solution. The vector equation is the same as







x
x + y

x + y + z
2x − z






=







3
−2

4
0






.
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We can rewrite the vector equation as four equations that each must be true at the
same time:

x = 3, x + y = −2, x + y + z = 4, 2x − z = 0.

So we deduce that x = 3 must be true from the first equation, then y = −2−3= −5
from the second and so z = 4− 3+ 5 = 6 from the third. The values x = 3, y =
−5, z = 6 make the fourth equation work out as well. There is a unique solution:
x = 3, y = −5, z = 6.

We can also use vector notation to write this solution as




x
y
z



=





3
−5

6



 .

Example. Consider the vector equation

x





1
1
1



+ y





0
−1
−1



+ z





2
0
0



=





3
1
1



 .

Does this vector equation have a solution? Does it have more than one solution?

Solution. This vector equation has infinitely many solutions. We will solve equa-
tions like this more systematically later. For now, let’s content ourselves with the
observation that no matter what value of z we choose, setting x = 3 − 2z and
y = 2− 2z yields a solution, because

(3− 2z)





1
1
1



+ (2− 2z)





0
−1
−1



+ z





2
0
0



=





3− 2z + 2z
3− 2z − (2− 2z)
3− 2z − (2− 2z)



=





3
1
1





For now, this might look a bit like magic. But you can try for yourself what
happens if you set z = 0, x = 3 and y = 2 or z = 1, x = 1 and y = 0.

Example. Consider the vector equation

x





1
1
1



+ y





0
−1
−1



+ z





2
0
0



=





1
3
1



 .

Does this vector equation have a solution? Does it have more than one solution?
This vector equation does not have any solution. We could write it as three

separate equations:

x + 2z = 1, x − y = 3, x − y = 1,

which all have to be true at the same time for a solution x , y, z. The second equa-
tion says x − y = 3 and the third says x − y = 1. These two statements cannot be
true at the same time, no matter what values of x and y we choose. So there can
be no solution to the vector equation.
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Essential Definition. If one or more solutions exist for an equation or a system of
equations, it is said to be consistent. If an equation or system of equations does
not have any solution, it is said to be inconsistent.

The above definition is the first of several essential definitions that we will see
in this textbook. They are essential in that they form the essence of the subject of
linear algebra: learning linear algebra means (in part) learning these definitions.
All of the definitions are important, but it is essential that you learn and understand
the definitions marked as such.

A Picture of a Consistent System. Below we will show that the above system of
equations is consistent. Equivalently, this means that the above vector equation has
a solution. In other words, there is a linear combination of (1,2, 6) and (−1, 2,−1)
that equals (8, 16,3). We can visualize the last statement geometrically. Therefore,
the following figure gives a picture of a consistent system of equations. Compare
with figure below, which shows a picture of an inconsistent system.

Use this link to view the online demo

A picture of the above vector equation. Try to solve the equation geometrically by
moving the sliders.

1.2.2 Spans

It will be useful to know what are all linear combinations of a set of vectors
v1, v2, . . . , vk in Rn. In other words, we would like to understand the set of all
vectors b in Rn such that the vector equation (in the unknowns x1, x2, . . . , xk)

x1v1 + x2v2 + · · ·+ xkvk = b

has a solution (i.e. is consistent).

Essential Definition. Let v1, v2, . . . , vk be vectors in Rn. The span of v1, v2, . . . , vk is
the collection of all linear combinations of v1, v2, . . . , vk, and is denoted Span{v1, v2, . . . , vk}.
In symbols:

Span{v1, v2, . . . , vk}=
�

x1v1 + x2v2 + · · ·+ xkvk | x1, x2, . . . , xk in R
	

We also say that Span{v1, v2, . . . , vk} is the subset spanned by or generated by the
vectors v1, v2, . . . , vk.

If k = 0, so there are no vectors, then the span consists of just the origin 0.
You can either take that as the definition, or as a consequence of the fact that the
empty sum (the sum of no things) should be 0. That is, Span;= {0}.

Set Builder Notation. You should read the notation
�

x1v1 + x2v2 + · · ·+ xkvk | x1, x2, . . . , xk in R
	

https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=1,2,6&v2=-1,-2,-1&target=8,16,3&range=20&camera=3,.5,1.5
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as: “the set of all things of the form x1v1+ x2v2+ · · ·+ xkvk such that x1, x2, . . . , xk

are in R.” The vertical line is “such that”; everything to the left of it is “the set
of all things of this form”, and everything to the right is the condition that those
things must satisfy to be in the set. Specifying a set in this way is called set builder
notation.

All mathematical notation is only shorthand: any sequence of symbols must
translate into an ordinary sentence.

Note (Consistency and span). Here are two ways of saying the same thing:

1. A vector b is in the span of v1, v2, . . . , vk.

2. The vector equation

x1v1 + x2v2 + · · ·+ xkvk = b

is consistent, i.e., it has at least one solution.

Later, in important note in Section 3.2 we will develop a procedure for answer-
ing the question “is b in the span of v1, v2, . . . , vk?” in every circumstance. This will
be a byproduct of developing a process to find all the solutions of vector equations.

Use this link to view the online demo

This is a picture of an inconsistent linear system: the vector w on the right-hand side
of the equation x1v1+ x2v2 = w is not in the span of v1, v2. Convince yourself of this
by trying to solve the equation x1v1 + x2v2 = w by moving the sliders, and by row
reduction. Compare this figure.

Example. Is





3
1
1



 in Span











1
0
0



 ,





1
1
1











?

Solution. This question is asking whether we can find scalars x1 and x2 that
make the equation





3
1
1



= x1





1
0
0



+ x2





1
1
1





hold. We can rearrange this to give the vector equation




3
1
1



=





x1 + x2

0+ x2

0+ x2



 ,

which we can rewrite as three ordinary equations
( x1 + x2 = 3

x2 = 1
x2 = 1.

https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=1,2,6&v2=-1,-2,-1&target=2,-2,0&range=8&camera=3,.5,1.5
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If we set x1 = 2 and x2 = 1, then the equations are true. Therefore we can write





3
1
1



= 2





1
0
0



+





1
1
1



 .

This shows that





3
1
1



 is in Span











1
0
0



 ,





1
1
1











.

Example. Is





3
1
0



 in Span











1
0
0



 ,





1
1
1











?

Solution. This question is very similar to the last one. Can find scalars x1 and
x2 that make the equation





3
1
0



= x1





1
0
0



+ x2





1
1
1





hold. We can rearrange this to give





3
1
0



=





x1 + x2

0+ x2

0+ x2



 ,

which we can rewrite this vector equation as three ordinary equations

( x1 + x2 = 3
x2 = 1
x2 = 0.

The last two equations here contradict each other. They cannot both be true at the

same time. This shows that





3
1
0



 is not in Span











1
0
0



 ,





0
1
1











.

Pictures of Spans Drawing a picture of Span{v1, v2, . . . , vk} is the same as draw-
ing a picture of all linear combinations of v1, v2, . . . , vk.
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Span;

Span{v}

v

Span{v, w}

v

w

Span{v, w}

v

w

Pictures of spans in R2.
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Span{v}

v

Span{v, w}

v

w

v

w
u

Span{u, v, w} Span{u, v, w}

v

w

u

Pictures of spans in R3. The span of two noncollinear vectors is the plane containing
the origin and the heads of the vectors. Note that three coplanar (but not collinear)
vectors span a plane and not a 3-space, just as two collinear vectors span a line and
not a plane.

Interactive: Span of two vectors in R2.

Use this link to view the online demo

Interactive picture of a span of two vectors in R2. Check “Show x.v + y.w” and move
the sliders to see how every point in the violet region is in fact a linear combination
of the two vectors.

Interactive: Span of two vectors in R3.

Use this link to view the online demo

Interactive picture of a span of two vectors in R3. Check “Show x.v + y.w” and move
the sliders to see how every point in the violet region is in fact a linear combination
of the two vectors.

Interactive: Span of three vectors in R3.

https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=1,2&v2=1,0&showPlane=true&range=5&labels=v,w
https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=3,2,4&v2=-4,2,1&labels=v,w
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Use this link to view the online demo

Interactive picture of a span of three vectors in R3. Check “Show x.v + y.w + z.u”
and move the sliders to see how every point in the violet region is in fact a linear
combination of the three vectors.

https://ulrikbuchholtz.dk/ila/demos/spans.html?labels=v,w,u
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Chapter 2

Systems of Linear Equations:
Algebra

Primary Goal. Solve a system of linear equations algebraically in parametric form.

This chapter is devoted to the algebraic study of systems of linear equations
and their solutions. We will learn a systematic way of solving equations of the
form











3x1 + 4x2 + 10x3 + 19x4 − 2x5 − 3x6 = 141
7x1 + 2x2 − 13x3 − 7x4 + 21x5 + 8x6 = 2567
−x1 + 9x2 +

3
2 x3 + x4 + 14x5 + 27x6 = 26

1
2 x1 + 4x2 + 10x3 + 11x4 + 2x5 + x6 = −15.

In Section 2.1, we will introduce systems of linear equations, the class of equa-
tions whose study forms the subject of linear algebra. In Section 2.2, will present
a procedure, called row reduction, for finding all solutions of a system of linear
equations. In Section 2.3, you will see how to express all solutions of a system of
linear equations in a unique way using the parametric form of the general solution.
Finally, in Section 2.4, we will learn how to write a system of linear equations suc-
cinctly as a matrix equation, which looks like Ax = b, where A is an m× n matrix,
b is a vector in Rm and x is a variable vector in Rn.

2.1 Systems of Linear Equations

Objectives

1. Learn what a system of linear equations is.

2. Learn how a system of linear equations corresponds to a vector equation.

3. Learn what is meant by a solution to a system of linear equations.

4. Understand the solutions to systems of linear equations geometrically in di-
mensions 2 and 3.

23
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5. Vocabulary: system of linear equations, consistent system, inconsistent
system, solution set.

A major part of linear algebra is understanding the solutions of systems of
linear equations.

Definition. An equation in the unknowns x , y, z, . . . is called linear if both sides
of the equation are a sum of (constant) multiples of x , y, z, . . ., plus an optional
constant.

For instance,

3x + 4y = 2z
−x − z = 100

are linear equations, but

3x + yz = 3

sin(x)− cos(y) = 2

are not.
We will usually move the unknowns to the left side of the equation, and move

the constants to the right.
A system of linear equations is a collection of several linear equations, like

( x + 2y + 3z = 6
2x − 3y + 2z = 14
3x + y − z = −2.

(2.1.1)

Definition (Solution sets).

• A solution of a system of equations is a list of numbers x , y, z, . . . that make
all of the equations true simultaneously.

• The solution set of a system of equations is the collection of all solutions.

• Solving the system means finding all solutions with formulas involving some
number of parameters.

In the previous chapter, we encountered vector equations. It turns out that
vector equations are simply systems of linear equations in different notation. We’ll
give two examples to show this is the case.
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Example. Convert the vector equation

x





1
2
6



+ y





−1
−2
−1



=





8
16

3





to a system of linear equations.

Solution. Using the rules for scalar multiplication of vectors, the equation turns
into





1x
2x
6x



+





−1y
−2y
−1y



=





8
16

3



 .

We can tidy this up a bit to




x
2x
6x



+





−y
−2y
−y



=





8
16

3



 .

Then using the rules for addition of vectors, it turns into




x − y
2x − 2y

6x − y



=





8
16

3



 ,

which is the same as the system of linear equations
( x − y = 8

2x − 2y = 16
6x − y = 3.

Example. Convert the system
( x + y = 1

y + z = 2
z + x = 3

into a vector equation.

Solution. The way this system is written has the disadvantage that the variables
are not in a consistent order and also that not all variables appear in each equation.
You can rewrite it as

(1x + 1y + 0z = 1
0x + 1y + 1z = 2
1x + 0y + 1z = 3

and you can write this as an equation of vectors




1x + 1y + 0z
0x + 1y + 1z
1x + 0y + 1z



=





1
2
3



 .
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Using the rules for addition of vectors, you can rewrite the equation as




1x
0x
1x



+





1y
1y
0y



+





0z
1z
1z



=





1
2
3





and then using scalar multiplication you can convert this to the vector equation

x





1
0
1



+ y





1
1
0



+ z





0
1
1



=





1
2
3



 .

A system of linear equations need not have a solution. We have already seen
an example of this in vector notation (example in Section 1.2). Here is another
example: there do not exist numbers x and y making the following two equations
true simultaneously:

§

x + 2y = 3
x + 2y = −3

In this case, the solution set is empty, and the system is said to be inconsistent.

Definition. A system of equations is called inconsistent if it has no solutions. It
is called consistent if it has at least one solution.

This definition exactly matches the definition for vector equations (definition in
Section 1.2). A system of linear equations is consistent exactly when the associated
vector equation is.

2.1.1 Pictures of Solution Sets

Before discussing how to solve a system of linear equations below, it is helpful to
see some pictures of what these solution sets look like geometrically.

One Equation in Two Variables. Consider the linear equation x + y = 1. We can
rewrite this as y = 1− x , which defines a line in the plane: the slope is −1, and
the x-intercept is 1.
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Definition (Lines). For our purposes, a line is a ray that is straight and infinite in
both directions.

One Equation in Three Variables. Consider the linear equation x + y + z = 1.
This is the implicit equation for a plane in space.

x

y

z

Definition (Planes). A plane is a flat sheet that is infinite in all directions.

Remark. The equation x + y + z + w = 1 defines a “3-plane” in 4-space, and
more generally, a single linear equation in n variables defines an “(n− 1)-plane”
in n-space. We will make these statements precise in Section 3.4.

Two Equations in Two Variables. Now consider the system of two linear equa-
tions

§

x − 3y = −3
2x + y = 8.

Each equation individually defines a line in the plane, pictured below.
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A solution to the system of both equations is a pair of numbers (x , y) that makes
both equations true at once. In other words, it as a point that lies on both lines
simultaneously. We can see in the picture above that there is only one point where
the lines intersect: therefore, this system has exactly one solution. (This solution
is (3,2), as the reader can verify.)

Usually, two lines in the plane will intersect in one point, but of course this is
not always the case. Consider now the system of equations

§

x − 3y = −3
x − 3y = 3.

These define parallel lines in the plane.
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The fact that that the lines do not intersect means that the system of equations
has no solution. Of course, this is easy to see algebraically: if x − 3y = −3, then
it is cannot also be the case that x − 3y = 3.

There is one more possibility. Consider the system of equations
§

x − 3y = −3
2x − 6y = −6.

The second equation is a multiple of the first, so these equations define the same
line in the plane.

In this case, there are infinitely many solutions of the system of equations.

Two Equations in Three Variables. Consider the system of two linear equations
n x + y + z = 1

x − z = 0.
Each equation individually defines a plane in space. The solutions of the system
of both equations are the points that lie on both planes. We can see in the picture
below that the planes intersect in a line. In particular, this system has infinitely
many solutions.

Use this link to view the online demo

The planes defined by the equations x + y + z = 1 and x − z = 0 intersect in the red
line, which is the solution set of the system of both equations.

Remark. In general, the solutions of a system of equations in n variables is the
intersection of “(n − 1)-planes” in n-space. This is always some kind of linear
space, as we will discuss in Section 3.1.

https://ulrikbuchholtz.dk/ila/demos/planes.html
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2.1.2 Parametric Description of Solution Sets

According to this definition, solving a system of equations means writing down all
solutions in terms of some number of parameters. We will give a systematic way of
doing so in Section 2.3; for now we give parametric descriptions in the examples
of the previous subsection.

Lines. Consider the linear equation x + y = 1 of this example. In this context,
we call x + y = 1 an implicit equation of the line. We can write the same line in
parametric form as follows:

(x , y) = (t, 1− t) for any t ∈ R.

This means that every point on the line has the form (t, 1− t) for some real number
t. In this case, we call t a parameter, as it parameterizes the points on the line.

t = 0

t = 1

t = −1

Now consider the system of two linear equations
n x + y + z = 1

x − z = 0

of this example. These collectively form the implicit equations for a line in R3.
(At least two equations are needed to define a line in space.) This line also has a
parametric form with one parameter t:

(x , y, z) = (t, 1− 2t, t).

Use this link to view the online demo

The planes defined by the equations x + y + z = 1 and x − z = 0 intersect in the
yellow line, which is parameterized by (x , y, z) = (t, 1 − 2t, t). Move the slider to
change the parameterized point.

https://ulrikbuchholtz.dk/ila/demos/parametric2.html
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Note that in each case, the parameter t allows us to use R to label the points
on the line. However, neither line is the same as the number line R: indeed, every
point on the first line has two coordinates, like the point (0, 1), and every point on
the second line has three coordinates, like (0,1, 0).

Planes. Consider the linear equation x + y + z = 1 of this example. This is an
implicit equation of a plane in space. This plane has an equation in parametric
form: we can write every point on the plane as

(x , y, z) = (1− t −w, t, w) for any t, w ∈ R.

In this case, we need two parameters t and w to describe all points on the plane.

Use this link to view the online demo

The plane in R3 defined by the equation x + y + z = 1. This plane is parameterized
by two numbers t, w; move the sliders to change the parameterized point.

Note that the parameters t, w allow us to use R2 to label the points on the plane.
However, this plane is not the same as the plane R2: indeed, every point on this
plane has three coordinates, like the point (0, 0,1).

When there is a unique solution, as in this example, it is not necessary to use
parameters to describe the solution set.

2.2 Row Reduction

Objectives

1. Learn to replace a system of linear equations by an augmented matrix.

2. Learn how the elimination method corresponds to performing row opera-
tions on an augmented matrix.

3. Understand when a matrix is in (reduced) row echelon form.

4. Learn which row reduced matrices come from inconsistent linear systems.

5. Recipe: the row reduction algorithm.

6. Vocabulary words: row operation, row equivalence, matrix, augmented
matrix, pivot, (reduced) row echelon form.

In this section, we will present an algorithm for “solving” a system of linear
equations.

https://ulrikbuchholtz.dk/ila/demos/plane.html?coeffs=t,w&range=5
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2.2.1 The Elimination Method

We will solve systems of linear equations algebraically using the elimination method.
In other words, we will combine the equations in various ways to try to eliminate
as many variables as possible from each equation. There are three valid operations
we can perform on our system of equations:

• Scaling: we can multiply both sides of an equation by a nonzero number.

( x + 2y + 3z = 6
2x − 3y + 2z = 14
3x + y − z = −2

multiply 1st by −3
−−−−−−−−−→

(−3x − 6y − 9z = −18
2x − 3y + 2z = 14
3x + y − z = −2

• Replacement: we can add a multiple of one equation to another, replacing
the second equation with the result.

( x + 2y + 3z = 6
2x − 3y + 2z = 14
3x + y − z = −2

2nd = 2nd−2×1st
−−−−−−−−−−→

( x + 2y + 3z = 6
−7y − 4z = 2

3x + y − z = −2

• Swap: we can swap two equations.

( x + 2y + 3z = 6
2x − 3y + 2z = 14
3x + y − z = −2

3rd←→ 1st
−−−−−−→

(3x + y − z = −2
2x − 3y + 2z = 14

x + 2y + 3z = 6

Example. Solve (2.1.1) using the elimination method.

Solution.






x + 2y + 3z = 6

2x − 3y + 2z = 14

3x + y − z = −2

2nd = 2nd−2×1st
−−−−−−−−−−→







x + 2y + 3z = 6

−7y − 4z = 2

3x + y − z = −2

3rd = 3rd−3×1st
−−−−−−−−−→







x + 2y + 3z = 6

−7y − 4z = 2

−5y − 10z = −20

2nd←→ 3rd
−−−−−−→







x + 2y + 3z = 6

−5y − 10z = −20

−7y − 4z = 2

divide 2nd by −5
−−−−−−−−→







x + 2y + 3z = 6

y + 2z = 4

−7y − 4z = 2

3rd = 3rd+7×2nd
−−−−−−−−−−→







x + 2y + 3z = 6

y + 2z = 4

10z = 30
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At this point we’ve eliminated both x and y from the third equation, and we can
solve 10z = 30 to get z = 3. Substituting for z in the second equation gives
y + 2 · 3 = 4, or y = −2. Substituting for y and z in the first equation gives
x + 2 · (−2) + 3 · 3= 6, or x = 3. Thus the only solution is (x , y, z) = (1,−2, 3).

We can check that our solution is correct by substituting (x , y, z) = (1,−2,3)
into the original equation:

( x + 2y + 3z = 6
2x − 3y + 2z = 14
3x + y − z = −2

substitute
−−−−→

( 1 + 2 · (−2) + 3 · 3 = 6
2 · 1 − 3 · (−2) + 2 · 3 = 14
3 · 1 + (−2) − 3 = −2.

Augmented Matrices and Row Operations Solving equations by elimination
requires writing the variables x , y, z and the equals sign = over and over again,
merely as placeholders: all that is changing in the equations is the coefficient
numbers. We can make our life easier by extracting only the numbers, and putting
them in a box:

( x + 2y + 3z = 6
2x − 3y + 2z = 14
3x + y − z = −2

becomes
−−−−→





1 2 3 6
2 −3 2 14
3 1 −1 −2



 .

This is called an augmented matrix. The word “augmented” refers to the vertical
line, which we draw to remind ourselves where the equals sign belongs; a matrix
is a grid of numbers without the vertical line. In this notation, our three valid ways
of manipulating our equations become row operations:

• Scaling: multiply all entries in a row by a nonzero number.




1 2 3 6
2 −3 2 14
3 1 −1 −2





R1=R1×−3
−−−−−→





−3 −6 −9 −18
2 −3 2 14
3 1 −1 −2





Here the notation R1 simply means “the first row”, and likewise for R2, R3,
etc.

• Replacement: add a multiple of one row to another, replacing the second
row with the result.





1 2 3 6
2 −3 2 14
3 1 −1 −2





R2=R2−2×R1−−−−−−−→





1 2 3 6
0 −7 −4 2
3 1 −1 −2





• Swap: interchange two rows.




1 2 3 6
2 −3 2 14
3 1 −1 −2





R1←→R3−−−−→





3 1 −1 −2
2 −3 2 14
1 2 3 6




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Remark. When we wrote our row operations above we used expressions like R2 =
R2 − 2 × R1. Of course this does not mean that the second row is equal to the
second row minus twice the first row. Instead it means that we are replacing the
second row with the second row minus twice the first row. This kind of syntax is
used frequently in computer programming when we want to change the value of
a variable.

Example. Solve (2.1.1) using row operations.

Solution. We start by forming an augmented matrix:

( x + 2y + 3z = 6
2x − 3y + 2z = 14
3x + y − z = −2

becomes
−−−−→





1 2 3 6
2 −3 2 14
3 1 −1 −2



 .

Eliminating a variable from an equation means producing a zero to the left of the
line in an augmented matrix. First we produce zeros in the first column (i.e. we
eliminate x) by subtracting multiples of the first row.





1 2 3 6
2 −3 2 14
3 1 −1 −2





R2=R2−2R1−−−−−−→





1 2 3 6
0 −7 −4 2
3 1 −1 −2





R3=R3−3R1−−−−−−→





1 2 3 6
0 −7 −4 2
0 −5 −10 −20





This was made much easier by the fact that the top-left entry is equal to 1, so we
can simply multiply the first row by the number below and subtract. In order to
eliminate y in the same way, we would like to produce a 1 in the second column.
We could divide the second row by −7, but this would produce fractions; instead,
let’s divide the third by −5.





1 2 3 6
0 −7 −4 2
0 −5 −10 −20





R3=R3÷−5
−−−−−→





1 2 3 6
0 −7 −4 2
0 1 2 4





R2←→R3−−−−→





1 2 3 6
0 1 2 4
0 −7 −4 2





R3=R3+7R2−−−−−−→





1 2 3 6
0 1 2 4
0 0 10 30





R3=R3÷10
−−−−−→





1 2 3 6
0 1 2 4
0 0 1 3




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We swapped the second and third row just to keep things orderly. Now we translate
this augmented matrix back into a system of equations:





1 2 3 6
0 1 2 4
0 0 1 3





becomes
−−−−→

(

x + 2y + 3z = 6
y + 2z = 4

z = 3

Hence z = 3; back-substituting as in this example gives (x , y, z) = (1,−2,3).

The process of doing row operations to a matrix does not change the solution
set of the corresponding linear equations!

Indeed, the whole point of doing these operations is to solve the equations using
the elimination method.

Definition. Two matrices are called row equivalent if one can be obtained from
the other by doing some number of row operations.

So the linear equations of row-equivalent matrices have the same solution set.

Example (An Inconsistent System). Solve the following system of equations using
row operations:

( x + y = 2
3x + 4y = 5
4x + 5y = 9

Solution. First we put our system of equations into an augmented matrix.

( x + y = 2
3x + 4y = 5
4x + 5y = 9

augmented matrix
−−−−−−−−−→





1 1 2
3 4 5
4 5 9





We clear the entries below the top-left using row replacement.




1 1 2
3 4 5
4 5 9





R2=R2−3R1−−−−−−→





1 1 2
0 1 −1
4 5 9





R3=R3−4R1−−−−−−→





1 1 2
0 1 −1
0 1 1





Now we clear the second entry from the last row.




1 1 2
0 1 −1
0 1 1





R3=R3−R2−−−−−→





1 1 2
0 1 −1
0 0 2




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This translates back into the system of equations
( x + y = 2

y = −1
0 = 2.

Our original system has the same solution set as this system. But this system has no
solutions: there are no values of x , y making the third equation true! We conclude
that our original equation was inconsistent.

2.2.2 Echelon Forms

In the previous subsection we saw how to translate a system of linear equations
into an augmented matrix. We want to find an algorithm for “solving” such an
augmented matrix. First we must decide what it means for an augmented matrix
to be “solved”.

Definition. A matrix is in row echelon form if:

1. All zero rows are at the bottom.

2. The first nonzero entry of a row is to the right of the first nonzero entry of
the row above.

3. Below the first nonzero entry of a row, all entries are zero.

Here is a picture of a matrix in row echelon form:








⋆ ⋆ ⋆ ⋆ ⋆

0 ⋆ ⋆ ⋆ ⋆

0 0 0 ⋆ ⋆

0 0 0 0 0









⋆= any number

⋆ = any nonzero number

Remark (Why the word “echelon”?). The word echelon comes from the Latin word
for ladder, and in French means “rung of a ladder”. In English, it refers more
abstractly to a rank in an organization (as in “the upper echelons of society”), while
an “echelon formation” means a step-like arrangement, for instance an echelon
formation of ducks, road cyclists, or airplanes.

Definition. A pivot is the first nonzero entry of a row of a matrix in row echelon
form.

A matrix in row-echelon form is generally easy to solve using back-substitution.
For example,





1 2 3 6
0 1 2 4
0 0 10 30





becomes
−−−−→

(

x + 2y + 3z = 6
y + 2z = 4

10z = 30.

We immediately see that z = 3, which implies y = 4 − 2 · 3 = −2 and x = 6 −
2(−2)− 3 · 3= 1. See this example.
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Definition. A matrix is in reduced row echelon form if it is in row echelon form,
and in addition:

5. Each pivot is equal to 1.

6. Each pivot is the only nonzero entry in its column.

Here is a picture of a matrix in reduced row echelon form:







1 0 ⋆ 0 ⋆
0 1 ⋆ 0 ⋆
0 0 0 1 ⋆
0 0 0 0 0







⋆= any number

1= pivot

A matrix in reduced row echelon form is in some sense completely solved. For
example,





1 0 0 1
0 1 0 −2
0 0 1 3





becomes
−−−−→

( x = 1
y = −2
z = 3.

Example. The following matrices are in reduced row echelon form:

�

1 0 2
0 1 −1

�

�

0 1 8 0
�

�

1 17 0
0 0 1

� �

0 0 0
0 0 0

�

.

The following matrices are in row echelon form but not reduced row echelon form:

�

2 1
0 1

�





2 7 1 4
0 0 2 1
0 0 0 3





�

1 17 0
0 1 1

� �

2 1 3
0 0 0

�

.

The following matrices are not in echelon form:





2 7 1 4
0 0 2 1
0 0 1 3





�

0 17 0
0 2 1

� �

2 1
2 1

�







0
1
0
0






.

When deciding if an augmented matrix is in (reduced) row echelon form, there
is nothing special about the augmented column(s). Just ignore the vertical
line.

If an augmented matrix is in reduced row echelon form, the corresponding
linear system is viewed as solved. We will see below why this is the case, and we
will show that any matrix can be put into reduced row echelon form using only
row operations.
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Remark (Why the word “pivot”?). Consider the following system of equations:

§

x − y = 0
x + y = 2.

We can visualize this system as a pair of lines in R2 (red and blue, respectively,
in the picture below) that intersect at the point (1,1). If we subtract the first
equation from the second, we obtain the equation 2y = 2, or y = 1. This results
in the system of equations:

§

x − y = 0
y = 1.

In terms of row operations on matrices, we can write this as:

�

1 −1 0
1 1 2

�

R2=R2−R1−−−−−→
�

1 −1 0
0 2 2

�

R2=
1
2 R2

−−−−→
�

1 −1 0
0 1 1

�

x −
y =

0

x +
y =

2

y = 1

“pivot”

What has happened geometrically is that the original blue line has been re-
placed with the new blue line y = 1. We can think of the blue line as rotating, or
pivoting, around the solution (1, 1). We used the pivot position in the matrix in
order to make the blue line pivot like this. This is one possible explanation for the
terminology “pivot”.
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2.2.3 The Row Reduction Algorithm

Theorem. Every matrix is row equivalent to one and only one matrix in reduced row
echelon form.

We will give an algorithm, called row reduction or Gaussian elimination,
which demonstrates that every matrix is row equivalent to at least one matrix in
reduced row echelon form.

Remark (On the name “Gaussian elimination”). Although the algorithm is called
Gaussian elimination, the method predates Carl Friedrich Gauss considerably. A
variation appears in Chapter 8 on Rectangular Arrays in the The Nine Chapters on
the Mathematical Art, a Chinese book dating back to before the 1st century BCE.

The uniqueness statement is interesting—it means that, no matter how you
row reduce, you always get the same matrix in reduced row echelon form. We
deduce it in Section 3.5.

This assumes, of course, that you only do the three legal row operations, and
you don’t make any arithmetic errors.

Algorithm (Row Reduction).

Step 1a: Swap the 1st row with a lower one so a leftmost nonzero entry is in
the 1st row (if necessary).

Step 1b: Scale the 1st row so that its first nonzero entry is equal to 1.

Step 1c: Use row replacement so all entries below this 1 are 0.

Step 2a: Swap the 2nd row with a lower one so that the leftmost nonzero entry
is in the 2nd row.

Step 2b: Scale the 2nd row so that its first nonzero entry is equal to 1.

Step 2c: Use row replacement so all entries below this 1 are 0.

Step 3a: Swap the 3rd row with a lower one so that the leftmost nonzero entry
is in the 3rd row.

etc.

Last Step: Use row replacement to clear all entries above the pivots, starting
with the last pivot.

Example. Row reduce this matrix:




0 −7 −4 2
2 4 6 12
3 1 −1 −2



 .

Solution.
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0 −7 −4 2
2 4 6 12
3 1 −1 −2

 !

2 4 6 12
0 −7 −4 2
3 1 −1 −2

 !

1 2 3 6
0 −7 −4 2
3 1 −1 −2

 !

1 2 3 6
0 −7 −4 2
0 −5 −10 −20

 !

1 2 3 6
0 −5 −10 −20
0 −7 −4 2

 !

1 2 3 6
0 1 2 4
0 −7 −4 2

 !

1 2 3 6
0 1 2 4
0 0 10 30

 !

1 2 3 6
0 1 2 4
0 0 1 3

 !

1 2 3 6
0 1 0 −2
0 0 1 3

 !

1 2 0 −3
0 1 0 −2
0 0 1 3

 !

1 0 0 1
0 1 0 −2
0 0 1 3

 !

R1←→ R2

R1 = R1 ÷ 2

R3 = R3 − 3R1

R2←→ R3

R2 = R2 ÷−5

R3 = R3 + 7R2

R3 = R3 ÷ 10

R2 = R2 − 2R3

R1 = R1 − 3R3

R1 = R1 − 2R2

Step 1a: Row swap
to make this nonzero.

Step 1b: Scale to make this 1.

Step 1c: Subtract a multiple of
the first row to clear this.

Optional: swap rows 2
and 3 to make Step 2b
easier next.

Step 2a: This is already nonzero.
Step 2b: Scale to make this 1.

Note how Step 2b
doesn’t create fractions.

Step 2c: Add 7 times
the second row to clear this.

Step 3a: This is already nonzero.
Step 3b: Scale to make this 1.

Last step: add multiples of
the third row to clear these.

Last step: add −2 times
the third row to clear this.

The reduced row echelon form of the matrix is




1 0 0 1
0 1 0 −2
0 0 1 3





translates to
−−−−−−→

( x = 1
y = −2

z = 3.
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The reduced row echelon form of the matrix tells us that the only solution is
(x , y, z) = (1,−2,3).

Use this link to view the online demo

Animated slideshow of the row reduction in this example.

Here is the row reduction algorithm, summarized in pictures.

⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆













1 ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆













1 ⋆ ⋆ ⋆

0 1 ⋆ ⋆

0 ⋆ ⋆ ⋆

0 ⋆ ⋆ ⋆













1 ⋆ ⋆ ⋆

0 1 ⋆ ⋆

0 ⋆ ⋆ ⋆

0 ⋆ ⋆ ⋆













1 ⋆ ⋆ ⋆

0 1 ⋆ ⋆

0 0 0 ⋆

0 0 0 ⋆













1 ⋆ ⋆ ⋆

0 1 ⋆ ⋆

0 0 0 ⋆

0 0 0 ⋆













1 ⋆ ⋆ ⋆

0 1 ⋆ ⋆

0 0 0 1
0 0 0 ⋆













1 ⋆ ⋆ ⋆

0 1 ⋆ ⋆

0 0 0 1
0 0 0 0













1 ⋆ ⋆ ⋆

0 1 ⋆ ⋆

0 0 0 1
0 0 0 0













1 ⋆ ⋆ 0
0 1 ⋆ 0
0 0 0 1
0 0 0 0













1 0 ⋆ 0
0 1 ⋆ 0
0 0 0 1
0 0 0 0













Get a 1 here Clear down Get a 1 here

Clear down (maybe these are already zero) Get a 1 here

Clear down Matrix is in REF Clear up

Clear up Matrix is in RREF

It will be very important to know where are the pivots of a matrix after row
reducing; this is the reason for the following piece of terminology.

Definition. A pivot position of a matrix is an entry that is a pivot of a row echelon
form of that matrix.

A pivot column of a matrix is a column that contains a pivot position.

https://ulrikbuchholtz.dk/ila/demos/rowred2.html
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Example (Pivot Positions). Find the pivot positions and pivot columns of this ma-
trix

A=





0 −7 −4 2
2 4 6 12
3 1 −1 −2



 .

Solution. We saw in this example that a row echelon form of the matrix is




1 2 3 6
0 1 2 4
0 0 10 30



 .

The pivot positions of A are the entries that become pivots in a row echelon form;
they are marked in red below:





0 −7 −4 2
2 4 6 12
3 1 −1 −2



 .

The first, second, and third columns are pivot columns.

Example (An Inconsistent System). Solve the linear system
§

2x + 10y = −1
3x + 15y = 2

using row reduction.

Solution.
�

2 10 −1
3 15 2

�

R1=R1÷2
−−−−−→

�

1 5 −1
2

3 15 2

�

(Step 1b)

R2=R2−3R1−−−−−−→
�

1 5 −1
2

0 0 7
2

�

(Step 1c)

R2=R2×
2
7−−−−−→

�

1 5 −1
2

0 0 1

�

(Step 2b)

R1=R1+
1
2 R2

−−−−−−→
�

1 5 0
0 0 1

�

(Step 2c)

This row reduced matrix corresponds to the inconsistent system
n x + 5y = 0

0 = 1.

In the above example, we saw how to recognize the reduced row echelon form
of an inconsistent system.

The Row Echelon Form of an Inconsistent System. An augmented matrix corre-
sponds to an inconsistent system of equations if and only if the last column (i.e., the
augmented column) is a pivot column.



2.2. ROW REDUCTION 43

In other words, the row reduced matrix of an inconsistent system looks like
this:





1 0 ⋆ ⋆ 0
0 1 ⋆ ⋆ 0
0 0 0 0 1





We have discussed two classes of matrices so far:

1. When the reduced row echelon form of a matrix has a pivot in every non-
augmented column, then it corresponds to a system with a unique solution:





1 0 0 1
0 1 0 −2
0 0 1 3





translates to
−−−−−−→

( x = 1
y = −2

z = 3.

2. When the reduced row echelon form of a matrix has a pivot in the last (aug-
mented) column, then it corresponds to a system with a no solutions:

�

1 5 0
0 0 1

�

translates to
−−−−−−→

n x + 5y = 0
0 = 1.

What happens when one of the non-augmented columns lacks a pivot? This is the
subject of Section 2.3.

Example (A System with Many Solutions). Solve the linear system
§

2x + y + 12z = 1
x + 2y + 9z = −1

using row reduction.

Solution.
�

2 1 12 1
1 2 9 −1

�

R1←→R2−−−−→
�

1 2 9 −1
2 1 12 1

�

(Optional)

R2=R2−2R1−−−−−−→
�

1 2 9 −1
0 −3 −6 3

�

(Step 1c)

R2=R2÷−3
−−−−−→

�

1 2 9 −1
0 1 2 −1

�

(Step 2b)

R1=R1−2R2−−−−−−→
�

1 0 5 1
0 1 2 −1

�

(Step 2c)

This row reduced matrix corresponds to the linear system
§

x + 5z = 1
y + 2z = −1.

In what sense is the system solved? We will see in Section 2.3.



44 CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS: ALGEBRA

2.3 Parametric Form

Objectives

1. Learn to express the solution set of a system of linear equations in parametric
form.

2. Understand the three possibilities for the number of solutions of a system of
linear equations.

3. Recipe: parametric form.

4. Vocabulary word: free variable.

2.3.1 Free Variables

There is one possibility for the row reduced form of a matrix that we did not see
in Section 2.2.

Example (A System with a Free Variable). Consider the linear system
§

2x + y + 12z = 1
x + 2y + 9z = −1.

We solve it using row reduction:

�

2 1 12 1
1 2 9 −1

�

R1←→R2−−−−→
�

1 2 9 −1
2 1 12 1

�

(Optional)

R2=R2−2R1−−−−−−→
�

1 2 9 −1
0 −3 −6 3

�

(Step 1c)

R2=R2÷−3
−−−−−→

�

1 2 9 −1
0 1 2 −1

�

(Step 2b)

R1=R1−2R2−−−−−−→
�

1 0 5 1
0 1 2 −1

�

(Step 2c)

This row reduced matrix corresponds to the linear system
§

x + 5z = 1
y + 2z = −1.

In what sense is the system solved? We rewrite as
§

x = 1 − 5z
y = −1 − 2z.
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For any value of z, there is exactly one value of x and y that make the equations
true. But we are free to choose any value of z.

We have found all solutions: it is the set of all values x , y, z, where
( x = 1 − 5z

y = −1 − 2z
z = z

z any real number.

This is called the parametric form for the solution to the linear system. The variable
z is called a free variable.

Use this link to view the online demo

A picture of the solution set (the yellow line) of the linear system in this example.
There is a unique solution for every value of z; move the slider to change z.

Given the parametric form for the solution to a linear system, we can obtain
specific solutions by replacing the free variables with any specific real numbers.
For instance, setting z = 0 in the last example gives the solution (x , y, z) =
(1,−1, 0), and setting z = 1 gives the solution (x , y, z) = (−4,−3,1).

Definition. Consider a consistent system of equations in the variables x1, x2, . . . , xn.
Let A be a row echelon form of the augmented matrix for this system.

We say that x i is a free variable if its corresponding column in A is not a pivot
column.

In the above example, the variable z was free because the reduced row echelon
form matrix was

�

1 0 5 1
0 1 2 −1

�

.

In the matrix
�

1 ⋆ 0 ⋆ ⋆
0 0 1 ⋆ ⋆

�

,

the free variables are x2 and x4. (The augmented column is not free because it
does not correspond to a variable.)

Recipe: Parametric form. The parametric form of the solution set of a con-
sistent system of linear equations is obtained as follows.

1. Write the system as an augmented matrix.

2. Row reduce to reduced row echelon form.

3. Write the corresponding (solved) system of linear equations.

4. Move all free variables to the right hand side of the equations.

Moving the free variables to the right hand side of the equations amounts to
solving for the non-free variables (the ones that come pivot columns) in terms

https://ulrikbuchholtz.dk/ila/demos/parametric1.html
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of the free variables. One can think of the free variables as being independent
variables, and the non-free variables being dependent.

Implicit Versus Parameterized Equations. The solution set of the system of linear
equations

§

2x + y + 12z = 1
x + 2y + 9z = −1

is a line in R3, as we saw in this example. These equations are called the implicit
equations for the line: the line is defined implicitly as the simultaneous solutions
to those two equations.

The parametric form
§

x = 1 − 5z
y = −1 − 2z.

can be written as follows:

(x , y, z) = (1− 5z, −1− 2z, z) z any real number.

This called a parameterized equation for the same line. It is an expression that
produces all points of the line in terms of one parameter, z.

One should think of a system of equations as being an implicit equation for
its solution set, and of the parametric form as being the parameterized equation
for the same set. The parameteric form is much more explicit: it gives a concrete
recipe for producing all solutions.

You can choose any value for the free variables in a (consistent) linear system.
Free variables come from the columns without pivots in a matrix in row echelon
form.

Example. Suppose that the reduced row echelon form of the matrix for a linear
system in four variables x1, x2, x3, x4 is

�

1 0 0 3 2
0 0 1 4 −1

�

.

The free variables are x2 and x4: they are the ones whose columns are not pivot
columns.

This translates into the system of equations
§

x1 + 3x4 = 2
x3 + 4x4 = −1

parametric form
−−−−−−−−→

§

x1 = 2 − 3x4

x3 = −1 − 4x4.

What happened to x2? It is a free variable, but no other variable depends on it.
The general solution to the system is

(x1, x2, x3, x4) = (2− 3x4, x2, −1− 4x4, x4),

for any values of x2 and x4. For instance, (2, 0,−1,0) is a solution (with x2 = x4 =
0), and (5, 1,3,−1) is a solution (with x2 = 1, x4 = −1).
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Example (A Parameterized Plane). The system of one linear equation

x + y + z = 1

comes from the matrix
�

1 1 1 1
�

,

which is already in reduced row echelon form. The free variables are y and z. The
parametric form for the general solution is

(x , y, z) = (1− y − z, y, z)

for any values of y and z. This is the parametric equation for a plane in R3.

Use this link to view the online demo

A plane described by two parameters y and z. Any point on the plane is obtained by
substituting suitable values for y and z.

2.3.2 Number of Solutions

There are three possibilities for the reduced row echelon form of the augmented
matrix of a linear system.

1. The last column is a pivot column. In this case, the system is inconsistent.
There are zero solutions, i.e., the solution set is empty. For example, the
matrix





1 0 0
0 1 0
0 0 1





comes from a linear system with no solutions.

2. Every column except the last column is a pivot column. In this case, the
system has a unique solution. For example, the matrix





1 0 0 a
0 1 0 b
0 0 1 c





tells us that the unique solution is (x , y, z) = (a, b, c).

3. The last column is not a pivot column, and some other column is not a
pivot column either. In this case, the system has infinitely many solutions,
corresponding to the infinitely many possible values of the free variable(s).
For example, in the system corresponding to the matrix

�

1 −2 0 3 1
0 0 1 4 −1

�

,

any values for x2 and x4 yield a solution to the system of equations.

https://ulrikbuchholtz.dk/ila/demos/plane.html
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2.4 Matrix Equations

Objectives

1. Understand the equivalence between a system of linear equations, an aug-
mented matrix, a vector equation, and a matrix equation.

2. Characterize the vectors b such that Ax = b is consistent, in terms of the
span of the columns of A.

3. Characterize matrices A such that Ax = b is consistent for all vectors b.

4. Recipe: multiply a vector by a matrix (two ways).

5. Picture: the set of all vectors b such that Ax = b is consistent.

6. Vocabulary word: matrix equation.

2.4.1 The Matrix Equation Ax = b.

In this section we introduce a very concise way of writing a system of linear equa-
tions: Ax = b. Here A is a matrix and x , b are vectors (generally of different sizes),
so first we must explain how to multiply a matrix by a vector.

When we say “A is an m×n matrix,” we mean that A has m rows and n columns.

Remark. In this book, we do not reserve the letters m and n for the numbers of
rows and columns of a matrix. If we write “A is an n × m matrix”, then n is the
number of rows of A and m is the number of columns.

Definition. Let A be an m× n matrix with columns v1, v2, . . . , vn:

A=





| | |
v1 v2 · · · vn

| | |





The product of A with a vector x in Rn is the linear combination

Ax =





| | |
v1 v2 · · · vn

| | |













x1

x2
...

xn









= x1v1 + x2v2 + · · ·+ xnvn.

This is a vector in Rm.
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Example.
�

4 5 6
7 8 9

�





1
2
3



= 1
�

4
7

�

+ 2
�

5
8

�

+ 3
�

6
9

�

=
�

32
50

�

.

In order for Ax to make sense, the number of entries of x has to be the same as
the number of columns of A: we are using the entries of x as the coefficients of the
columns of A in a linear combination. The resulting vector has the same number
of entries as the number of rows of A, since each column of A has that number of
entries.

If A is an m×n matrix (m rows, n columns), then Ax makes sense when x has
n entries. The product Ax has m entries.

Properties of the Matrix-Vector Product. Let A be an m × n matrix, let u, v be
vectors in Rn, and let c be a scalar. Then:

• A(u+ v) = Au+ Av

• A(cu) = cAu

Definition. A matrix equation is an equation of the form Ax = b, where A is an
m×n matrix, b is a vector in Rm, and x is a vector whose coefficients x1, x2, . . . , xn

are unknown.

In this book we will study two complementary questions about a matrix equa-
tion Ax = b:

1. Given a specific choice of b, what are all of the solutions to Ax = b?

2. What are all of the choices of b so that Ax = b is consistent?

The first question is more like the questions you might be used to from your earlier
courses in algebra; you have a lot of practice solving equations like x2− 1= 0 for
x . The second question is perhaps a new concept for you. The rank theorem in
Section 3.6, which is the culmination of this chapter, tells us that the two questions
are intimately related.

Matrix Equations and Vector Equations. Let v1, v2, . . . , vn and b be vectors in Rm.
Consider the vector equation

x1v1 + x2v2 + · · ·+ xnvn = b.

This is equivalent to the matrix equation Ax = b, where

A=





| | |
v1 v2 · · · vn

| | |



 and x =









x1

x2
...

xn









.
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Conversely, if A is any m×n matrix, then Ax = b is equivalent to the vector equation

x1v1 + x2v2 + · · ·+ xnvn = b,

where v1, v2, . . . , vn are the columns of A, and x1, x2, . . . , xn are the entries of x .

Example. Write the vector equation

2v1 + 3v2 − 4v3 =





7
2
1





as a matrix equation, where v1, v2, v3 are vectors in R3.

Solution. Let A be the matrix with columns v1, v2, v3, and let x be the vector with
entries 2,3,−4. Then

Ax =





| | |
v1 v2 v3

| | |









2
3
−4



= 2v1 + 3v2 − 4v3,

so the vector equation is equivalent to the matrix equation Ax =





7
2
1



 .

Four Ways of Writing a Linear System. We now have four equivalent ways of
writing (and thinking about) a system of linear equations:

1. As a system of equations:
§

2x1 + 3x2 − 2x3 = 7
x1 − x2 − 3x3 = 5

2. As an augmented matrix:
�

2 3 −2 7
1 −1 −3 5

�

3. As a vector equation (x1v1 + x2v2 + · · ·+ xnvn = b):

x1

�

2
1

�

+ x2

�

3
−1

�

+ x3

�

−2
−3

�

=
�

7
5

�

4. As a matrix equation (Ax = b):

�

2 3 −2
1 −1 −3

�





x1

x2

x3



=
�

7
5

�

.

In particular, all four have the same solution set.

We will move back and forth freely between the four ways of writing a linear
system, over and over again, for the rest of the book.
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Another Way to Compute Ax The above definition is a useful way of defining the
product of a matrix with a vector when it comes to understanding the relationship
between matrix equations and vector equations. Here we give a definition that is
better-adapted to computations by hand.

Definition. A row vector is a matrix with one row. The product of a row vector
of length n and a (column) vector of length n is

�

a1 a2 · · · an

�









x1

x2
...

xn









= a1 x1 + a2 x2 + · · ·+ an xn.

This is a scalar.

Recipe: The row-column rule for matrix-vector multiplication. If A is an
m× n matrix with rows r1, r2, . . . , rm, and x is a vector in Rn, then

Ax =









— r1 —
— r2 —

...
— rm —









x =









r1 x
r2 x

...
rm x









.

Example.

�

4 5 6
7 8 9

�





1
2
3



=

















�

4 5 6
�





1
2
3





�

7 8 9
�





1
2
3





















=
�

4 · 1+ 5 · 2+ 6 · 3
7 · 1+ 8 · 2+ 9 · 3

�

=
�

32
50

�

.

This is the same answer as before:

�

4 5 6
7 8 9

�





1
2
3



= 1
�

4
7

�

+ 2
�

5
8

�

+ 3
�

6
9

�

=
�

1 · 4+ 2 · 5+ 3 · 6
1 · 7+ 2 · 8+ 3 · 9

�

=
�

32
50

�

.

2.4.2 Spans and Consistency

Let A be a matrix with columns v1, v2, . . . , vn:

A=





| | |
v1 v2 · · · vn

| | |



 .
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Then

Ax = b has a solution

⇐⇒ there exist x1, x2, . . . , xn such that A









x1

x2
...

xn









= b

⇐⇒ there exist x1, x2, . . . , xn such that x1v1 + x2v2 + · · ·+ xnvn = b
⇐⇒ b is a linear combination of v1, v2, . . . , vn

⇐⇒ b is in the span of the columns of A.

Spans and Consistency. The matrix equation Ax = b has a solution if and
only if b is in the span of the columns of A.

This gives an equivalence between an algebraic statement (Ax = b is consis-
tent), and a geometric statement (b is in the span of the columns of A).

Example (An Inconsistent System). Let A=





2 1
−1 0

1 −1



. Does the equation Ax =





0
2
2



 have a solution?

Solution. First we answer the question geometrically. The columns of A are

v1 =





2
−1

1



 and v2 =





1
0
−1



,

and the target vector (on the right-hand side of the equation) is w=





0
2
2



. The

equation Ax = w is consistent if and only if w is contained in the span of the
columns of A. So we draw a picture:
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v1

v2v2

wSpan{v1, v2}

It does not appear that w lies in Span{v1, v2}, so the equation is inconsistent.

Use this link to view the online demo

The vector w is not contained in Span{v1, v2}, so the equation Ax = b is inconsistent.
(Try moving the sliders to solve the equation.)

Let us check our geometric answer by solving the matrix equation using row
reduction. We put the system into an augmented matrix and row reduce:





2 1 0
−1 0 2

1 −1 2





RREF
−−→





1 0 0
0 1 0
0 0 1



 .

The last equation is 0 = 1, so the system is indeed inconsistent, and the matrix
equation





2 1
−1 0

1 −1



 x =





0
2
2





has no solution.

Example (A Consistent System). Let A =





2 1
−1 0

1 −1



. Does the equation Ax =





1
−1

2



 have a solution?

https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=2,-1,1&v2=1,0,-1&target=0,2,2&range=5
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Solution. First we answer the question geometrically. The columns of A are

v1 =





2
−1

1



 and v2 =





1
0
−1



,

and the target vector (on the right-hand side of the equation) is w=





1
−1

2



. The

equation Ax = w is consistent if and only if w is contained in the span of the
columns of A. So we draw a picture:

v1

v2v2

w

Span{v1, v2}

It appears that w is indeed contained in the span of the columns of A; in fact,
we can see

w= v1 − v2 =⇒ x =
�

1
−1

�

.

Use this link to view the online demo

The vector w is contained in Span{v1, v2}, so the equation Ax = b is consistent. (Move
the sliders to solve the equation.)

Let us check our geometric answer by solving the matrix equation using row
reduction. We put the system into an augmented matrix and row reduce:





2 1 1
−1 0 −1

1 −1 2





RREF
−−→





1 0 1
0 1 −1
0 0 0



 .

https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=2,-1,1&v2=1,0,-1&target=1,-1,2&range=5
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This gives us x = 1 and y = −1, which is consistent with the picture:

1





2
−1

1



− 1





1
0
−1



=





1
−1

2



 or A
�

1
−1

�

=





1
−1

2



 .

When Solutions Always Exist Building on this note, we have the following cri-
terion for when Ax = b is consistent for every choice of b.

Theorem. Let A be an m×n (non-augmented) matrix. The following are equivalent:

1. Ax = b has a solution for all b in Rm.

2. The span of the columns of A is all of Rm.

3. A has a pivot position in every row.

Proof. The equivalence of 1 and 2 is established by this note as applied to every b
in Rm.

Now we show that 1 and 3 are equivalent. (Since we know 1 and 2 are equiv-
alent, this implies 2 and 3 are equivalent as well.) If A has a pivot in every row,
then its reduced row echelon form looks like this:





1 0 ⋆ 0 ⋆
0 1 ⋆ 0 ⋆
0 0 0 1 ⋆



 ,

and therefore
�

A b
�

reduces to this:





1 0 ⋆ 0 ⋆ ⋆
0 1 ⋆ 0 ⋆ ⋆
0 0 0 1 ⋆ ⋆



 .

There is no b that makes it inconsistent, so there is always a solution. Conversely,
if A does not have a pivot in each row, then its reduced row echelon form looks
like this:





1 0 ⋆ 0 ⋆
0 1 ⋆ 0 ⋆
0 0 0 0 0



 ,

which can give rise to an inconsistent system after augmenting with b:





1 0 ⋆ 0 ⋆ 0
0 1 ⋆ 0 ⋆ 0
0 0 0 0 0 16



 .
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Recall that equivalent means that, for any given matrix A, either all of the
conditions of the above theorem are true, or they are all false.

Be careful when reading the statement of the above theorem. The first two
conditions look very much like this note, but they are logically quite different
because of the quantifier “for all b”.

Interactive: The criteria of the theorem are satisfied.

Use this link to view the online demo

An example where the criteria of the above theorem are satisfied. The violet region is
the span of the columns v1, v2, v3 of A, which is the same as the set of all b such that
Ax = b has a solution. If you drag b, the demo will solve Ax = b for you and move
x.

Interactive: The critera of the theorem are not satisfied.

Use this link to view the online demo

An example where the criteria of the above theorem are not satisfied. The violet line
is the span of the columns v1, v2, v3 of A, which is the same as the set of all b such that
Ax = b has a solution. Try dragging b in and out of the column span.

Remark. We will see in this corollary in Section 3.4 that the dimension of the span
of the columns is equal to the number of pivots of A. That is, the columns of A span
a line if A has one pivot, they span a plane if A has two pivots, etc. The whole space
Rm has dimension m, so this generalizes the fact that the columns of A span Rm

when A has m pivots.

https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?mat=2,1,-1:1,0,2&range2=5&show=false&closed=true
https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?show=false&closed=true
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Solution Sets and Subspaces

Primary Goals. We will study two related questions:

1. What is the set of solutions to Ax = b?

2. What is the set of b so that Ax = b is consistent?

The first question is the kind you are used to from your first algebra class: what
is the set of solutions to x2 − 1= 0. The second is also something you could have
studied in your previous algebra classes: for which b does x2 = b have a solution?
This question is more subtle at first glance, but you can solve it in the same way
as the first question, with the quadratic formula.

In order to answer the two questions listed above, we will use geometry. This
will be analogous to how you used parabolas in order to understand the solutions
to a quadratic equation in one variable. Specifically, this chapter is devoted to the
geometric study of two objects:

1. the solution set of a matrix equation Ax = b, and

2. the set of all b that makes a particular system consistent.

The first object, the solution set, will be introduced in Section 3.1. The second
object will be called the column space of A.

Instead of parabolas and hyperbolas, our geometric objects are subspaces, such
as lines and planes. Our geometric objects will be something like 13-dimensional
planes in R27, etc. It is amazing that we can say anything substantive about objects
that we cannot directly visualize.

We will develop a large amount of vocabulary that we will use to describe the
above objects. In addition to the concept of the span of a set of vectors from
Section 1.2, we will introduce linear independence (Section 3.2), subspaces (Sec-
tion 3.3), dimension (Section 3.4), and bases (Section 3.4 and Section 3.5). Fi-
nally, we relate the dimension of the column space of A and the dimension of
the solution set to Ax = b (strictly speaking, the solution set to Ax = 0) in Sec-
tion 3.6.

57
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3.1 Solution Sets

Objectives

1. Understand the relationship between the solution set of Ax = 0 and the
solution set of Ax = b.

2. Understand the difference between the solution set and the column span.

3. Recipes: parametric vector form, write the solution set of a homogeneous
system as a span.

4. Pictures: solution set of a homogeneous system, solution set of an inhomo-
geneous system, the relationship between the two.

5. Vocabulary: homogeneous/inhomogeneous, trivial solution.

In this section we will study the geometry of the solution set of any matrix
equation Ax = b.

3.1.1 Homogeneous Systems

The equation Ax = b is easier to solve when b = 0, so we start with this case.

Definition. A system of linear equations of the form Ax = 0 is called homoge-
neous.

A system of linear equations of the form Ax = b for b ̸= 0 is called inhomoge-
neous.

A homogeneous system is just a system of linear equations where all constants
on the right side of the equals sign are zero.

A homogeneous system always has the solution x = 0. This is called the trivial
solution. Any nonzero solution is called nontrivial.

Observation. The equation Ax = 0 has a nontrivial solution ⇐⇒ there is a free
variable ⇐⇒ A has a column without a pivot position.

Example (No nontrivial solutions). What is the solution set of Ax = 0, where

A=





1 3 4
2 −1 2
1 0 1



?
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Solution. We form an augmented matrix and row reduce:




1 3 4 0
2 −1 2 0
1 0 1 0





RREF
−−→





1 0 0 0
0 1 0 0
0 0 1 0



 .

The only solution is the trivial solution x = 0.

Observation. When we row reduce the augmented matrix for a homogeneous sys-
tem of linear equations, the last column will be zero throughout the row reduction
process. We saw this in the last example:





1 3 4 0
2 −1 2 0
1 0 1 0





So it is not really necessary to write augmented matrices when solving homoge-
neous systems.

When the homogeneous equation Ax = 0 does have nontrivial solutions, it
turns out that the solution set can be conveniently expressed as a span.

Parametric Vector Form (homogeneous case). Consider the following matrix in
reduced row echelon form:

A=





1 0 −8 −7
0 1 4 3
0 0 0 0



 .

The matrix equation Ax = 0 corresponds to the system of equations
§

x1 − 8x3 − 7x4 = 0
x2 + 4x3 + 3x4 = 0.

We can write the parametric form as follows:











x1 = 8x3 + 7x4

x2 = −4x3 − 3x4

x3 = x3

x4 = x4.

We wrote the redundant equations x3 = x3 and x4 = x4 in order to turn the above
system into a vector equation:

x =







x1

x2

x3

x4






= x3







8
−4

1
0






+ x4







7
−3

0
1






.
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This vector equation is called the parametric vector form of the solution set.
Since x3 and x4 are allowed to be anything, this says that the solution set is the

set of all linear combinations of







8
−4

1
0






and







7
−3

0
1






. In other words, the solution

set is

Span

















8
−4

1
0






,







7
−3

0
1

















.

Here is the general procedure.

Recipe: Parametric vector form (homogeneous case). Let A be an m × n
matrix. Suppose that the free variables in the homogeneous equation Ax = 0
are, for example, x3, x6, and x8.

1. Find the reduced row echelon form of A.

2. Write the parametric form of the solution set, including the redundant
equations x3 = x3, x6 = x6, x8 = x8. Put equations for all of the x i in
order.

3. Make a single vector equation from these equations by making the coef-
ficients of x3, x6, and x8 into vectors v3, v6, and v8, respectively.

The solutions to Ax = 0 will then be expressed in the form

x = x3v3 + x6v6 + x8v8

for some vectors v3, v6, v8 in Rn, and any scalars x3, x6, x8. This is called the
parametric vector form of the solution.
In this case, the solution set can be written as Span{v3, v6, v8}.

We emphasize the following fact in particular.

The set of solutions to a homogeneous equation Ax = 0 is a span.

Example (The solution set is a line). Compute the parametric vector form of the
solution set of Ax = 0, where

A=
�

1 −3
2 −6

�

.

Solution. We row reduce (without augmenting, as suggested in the above ob-
servation):

�

1 −3
2 −6

�

RREF
−−→

�

1 −3
0 0

�

.
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This corresponds to the single equation x1 − 3x2 = 0. We write the parametric
form including the redundant equation x2 = x2:

§

x1 = 3x2

x2 = x2.

We turn these into a single vector equation:

x =
�

x1

x2

�

= x2

�

3
1

�

.

This is the parametric vector form of the solution set. Since x2 is allowed to be
anything, this says that the solution set is the set of all scalar multiples of

�3
1

�

,
otherwise known as

Span
§�

3
1

�ª

.

We know how to draw the picture of a span of a vector: it is a line. Therefore, this
is a picture of the solution set:

Ax = 0

Use this link to view the online demo

Interactive picture of the solution set of Ax = 0. If you drag x along the line spanned
by
�3

1

�

, the product Ax is always equal to zero. This is what it means for Span{
�3

1

�

}
to be the solution set of Ax = 0.

Since there were two variables in the above example, the solution set is a subset
of R2. Since one of the variables was free, the solution set is a line:

Ax = 0

https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?lock=true&x=3,1&mat=1,-3:2,-6&range2=5&closed=true
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In order to actually find a nontrivial solution to Ax = 0 in the above example,
it suffices to substitute any nonzero value for the free variable x2. For instance,
taking x2 = 1 gives the nontrivial solution x = 1 ·

�3
1

�

=
�3

1

�

. Compare to this
important note in Section 2.3.

Example (The solution set is a plane). Compute the parametric vector form of the
solution set of Ax = 0, where

A=
�

1 −1 2
−2 2 −4

�

.

Solution. We row reduce (without augmenting, as suggested in the above ob-
servation):

�

1 −1 2
−2 2 −4

�

RREF
−−→

�

1 −1 2
0 0 0

�

.

This corresponds to the single equation x1− x2+2x3 = 0. We write the parametric
form including the redundant equations x2 = x2 and x3 = x3:

( x1 = x2 − 2x3

x2 = x2

x3 = x3.

We turn these into a single vector equation:

x =





x1

x2

x3



= x2





1
1
0



+ x3





−2
0
1



 .

This is the parametric vector form of the solution set. Since x2 and x3 are allowed
to be anything, this says that the solution set is the set of all linear combinations

of





1
1
0



 and





−2
0
1



. In other words, the solution set is

Span











1
1
0



 ,





−2
0
1











.

We know how to draw the span of two noncollinear vectors in R3: it is a plane.
Therefore, this is a picture of the solution set:
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Ax = 0

Use this link to view the online demo

Interactive picture of the solution set of Ax = 0. If you drag x along the violet plane,
the product Ax is always equal to zero. This is what it means for the plane to be the
solution set of Ax = 0.

Since there were three variables in the above example, the solution set is a
subset of R3. Since two of the variables were free, the solution set is a plane.

There is a natural question to ask here: is it possible to write the solution to a
homogeneous matrix equation using fewer vectors than the one given in the above
recipe? We will see in example in Section 3.2 that the answer is no: the vectors
from the recipe are always linearly independent, which means that there is no way
to write the solution with fewer vectors.

Another natural question is: are the solution sets for inhomogeneuous equa-
tions also spans? As we will see shortly, they are never spans, but they are closely
related to spans.

There is a natural relationship between the number of free variables and the
“size” of the solution set, as follows.

Dimension of the solution set. The above examples show us the following
pattern: when there is one free variable in a consistent matrix equation, the
solution set is a line, and when there are two free variables, the solution set
is a plane, etc. The number of free variables is called the dimension of the
solution set.

We will develop a rigorous definition of dimension in Section 3.4, but for now
the dimension will simply mean the number of free variables. Compare with this
important note in Section 3.2.

https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?lock=true&closed=true&x=0,0,0
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Intuitively, the dimension of a solution set is the number of parameters you
need to describe a point in the solution set. For a line only one parameter is
needed, and for a plane two parameters are needed. This is similar to how the
location of a building on Peachtree Street—which is like a line—is determined
by one number and how a street corner in Manhattan—which is like a plane—is
specified by two numbers.

3.1.2 Inhomogeneous Systems

Recall that a matrix equation Ax = b is called inhomogeneous when b ̸= 0.

Example (The solution set is a line). What is the solution set of Ax = b, where

A=
�

1 −3
2 −6

�

and b =
�

−3
−6

�

?

(Compare to this example, where we solved the corresponding homogeneous equa-
tion.)

Solution. We row reduce the associated augmented matrix:
�

1 −3 −3
2 −6 −6

�

RREF
−−→

�

1 −3 −3
0 0 0

�

.

This corresponds to the single equation x1−3x2 = −3. We can write the parametric
form as follows:

§

x1 = 3x2 − 3
x2 = x2 + 0.

We turn the above system into a vector equation:

x =
�

x1

x2

�

= x2

�

3
1

�

+
�

−3
0

�

.

This vector equation is called the parametric vector form of the solution set. We
write the solution set as

Span
§�

3
1

�ª

+
�

−3
0

�

.

Here is a picture of the solution set:

Ax = 0

Ax = b

p
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Use this link to view the online demo

Interactive picture of the solution set of Ax = b. If you drag x along the violet line, the
product Ax is always equal to b. This is what it means for the line to be the solution
set of Ax = b.

In the above example, the solution set was all vectors of the form

x =
�

x1

x2

�

= x2

�

3
1

�

+
�

−3
0

�

where x2 is any scalar. The vector p =
�−3

0

�

is also a solution of Ax = b: take
x2 = 0. We call p a particular solution.

In the solution set, x2 is allowed to be anything, and so the solution set is ob-
tained as follows: we take all scalar multiples of

�3
1

�

and then add the particular
solution p =

�−3
0

�

to each of these scalar multiples. Geometrically, this is accom-
plished by first drawing the span of

�3
1

�

, which is a line through the origin (and,
not coincidentally, the solution to Ax = 0), and we translate, or push, this line
along p =

�−3
0

�

. The translated line contains p and is parallel to Span{
�3

1

�

}: it is a
translate of a line.

Ax = 0

Ax = b

p

Example (The solution set is a plane). What is the solution set of Ax = b, where

A=
�

1 −1 2
−2 2 −4

�

and b =
�

1
−2

�

?

(Compare this example.)

Solution. We row reduce the associated augmented matrix:
�

1 −1 2 1
−2 2 −4 −2

�

RREF
−−→

�

1 −1 2 1
0 0 0 0

�

.

https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?x=-3,0&mat=1,-3:2,-6&lock=true&closed=true
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This corresponds to the single equation x1 − x2 + 2x3 = 1. We can write the
parametric form as follows:

( x1 = x2 − 2x3 + 1
x2 = x2 + 0
x3 = x3 + 0.

We turn the above system into a vector equation:

x =





x1

x2

x3



= x2





1
1
0



+ x3





−2
0
1



+





1
0
0



 .

This vector equation is called the parametric vector form of the solution set.
Since x2 and x3 are allowed to be anything, this says that the solution set is the set

of all linear combinations of





1
1
1



 and





−2
0
1



, translated by the vector p =





1
0
0



.

This is a plane which contains p and is parallel to Span











1
1
1



 ,





−2
0
1











: it is a

translate of a plane. We write the solution set as

Span











1
1
1



 ,





−2
0
1











+





1
0
0



 .

Here is a picture of the solution set:

p

Ax = b
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Use this link to view the online demo

Interactive picture of the solution set of Ax = b. If you drag x along the violet plane,
the product Ax is always equal to b. This is what it means for the plane to be the
solution set of Ax = b.

In the above example, the solution set was all vectors of the form

x =





x1

x2

x3



= x2





1
1
0



+ x3





−2
0
1



+





1
0
0



 .

where x2 and x3 are any scalars. In this case, a particular solution is p =





1
0
0



.

In the previous example and the example before it, the parametric vector form
of the solution set of Ax = b was exactly the same as the parametric vector form
of the solution set of Ax = 0 (from this example and this example, respectively),
plus a particular solution.

Key Observation. If Ax = b is consistent, the set of solutions to is obtained
by taking one particular solution p of Ax = b, and adding all solutions of
Ax = 0.
In particular, if Ax = b is consistent, the solution set is a translate of a span.

The parametric vector form of the solutions of Ax = b is just the parametric
vector form of the solutions of Ax = 0, plus a particular solution p.

It is not hard to see why the key observation is true. If p is a particular solution,
then Ap = b, and if x is a solution to the homogeneous equation Ax = 0, then

A(x + p) = Ax + Ap = 0+ b = b,

so x + p is another solution of Ax = b. On the other hand, if we start with any
solution x to Ax = b then x − p is a solution to Ax = 0 since

A(x − p) = Ax − Ap = b− b = 0.

Remark. Row reducing to find the parametric vector form will give you one par-
ticular solution p of Ax = b. But the key observation is true for any solution p. In
other words, if we row reduce in a different way and find a different solution p′ to
Ax = b then the solutions to Ax = b can be obtained from the solutions to Ax = 0
by either adding p or by adding p′.

https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?lock=true&closed=true&range1=3&x=1,0,0
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Example (The solution set is a point). What is the solution set of Ax = b, where

A=





1 3 4
2 −1 2
1 0 1



 and b =





0
1
0



?

Solution. We form an augmented matrix and row reduce:




1 3 4 0
2 −1 2 1
1 0 1 0





RREF
−−→





1 0 0 −1
0 1 0 −1
0 0 1 1



 .

The only solution is p =





−1
−1

1



.

According to the key observation, this is supposed to be a translate of a span
by p. Indeed, we saw in the first example that the only solution of Ax = 0 is the
trivial solution, i.e., that the solution set is the one-point set {0}. The solution set
of the inhomogeneous equation Ax = b is

{0}+





−1
−1

1



 .

Note that {0}= Span{0}, so the homogeneous solution set is a span.

Ax = b

Ax = 0
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See the interactive figures in the next subsection for visualizations of the key
observation.

Dimension of the solution set. As in this important note, when there is one
free variable in a consistent matrix equation, the solution set is a line—this line
does not pass through the origin when the system is inhomogeneous—when
there are two free variables, the solution set is a plane (again not through the
origin when the system is inhomogeneous), etc.

Again compare with this important note in Section 3.2.

3.1.3 Solution Sets and Column Spans

To every m × n matrix A, we have now associated two completely different geo-
metric objects, both described using spans.

• The solution set: for fixed b, this is the set of all x such that Ax = b.

◦ This is a span if b = 0, and it is a translate of a span if b ̸= 0 (and
Ax = b is consistent).

◦ It is a subset of Rn.

◦ It is computed by solving a system of equations: usually by row reduc-
ing and finding the parametric vector form.

• The span of the columns of A: this is the set of all b such that Ax = b is
consistent.

◦ This is always a span.

◦ It is a subset of Rm.

◦ It is not computed by solving a system of equations: row reduction
plays no role.

Do not confuse these two geometric constructions! In the first the question is
which x ’s work for a given b and in the second the question is which b’s work
for some x .

Interactive: Solution set and span of the columns (1).

Use this link to view the online demo

Left: the solution set of Ax = b is in violet. Right: the span of the columns of A is
in violet. As you move x, you change b, so the solution set changes—but all solution
sets are parallel planes. If you move b within the span of the columns, the solution
set also changes, and the demo solves the equation to find a particular solution x. If
you move b outside of the span of the columns, the system becomes inconsistent, and
the solution set disappears.

https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?mat=1,3:2,6&x=1,1
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Interactive: Solution set and span of the columns (2).

Use this link to view the online demo

Left: the solution set of Ax = b is in violet. Right: the span of the columns of A is
in violet. As you move x, you change b, so the solution set changes—but all solution
sets are parallel planes. If you move b within the span of the columns, the solution
set also changes, and the demo solves the equation to find a particular solution x. If
you move b outside of the span of the columns, the system becomes inconsistent, and
the solution set disappears.

Interactive: Solution set and span of the columns (3).

Use this link to view the online demo

Left: the solution set of Ax = b is in violet. Right: the span of the columns of A is
in violet. As you move x, you change b, so the solution set changes—but all solution
sets are parallel planes. If you move b within the span of the columns, the solution
set also changes, and the demo solves the equation to find a particular solution x. If
you move b outside of the span of the columns, the system becomes inconsistent, and
the solution set disappears.

3.2 Linear Independence

Objectives

1. Understand the concept of linear independence.

2. Learn two criteria for linear independence.

3. Understand the relationship between linear independence and pivot columns
/ free variables.

4. Recipe: test if a set of vectors is linearly independent / find an equation of
linear dependence.

5. Picture: whether a set of vectors in R2 or R3 is linearly independent or not.

6. Vocabulary: linear dependence relation / equation of linear dependence.

7. Theorem: “pivotal” theorem.

8. Essential Vocabulary: linearly independent, linearly dependent.

https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html
https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?mat=1,0,-1:0,1,1:1,1,0
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Sometimes the span of a set of vectors is “smaller” than you expect from the
number of vectors, as in the picture below. This means that (at least) one of the
vectors is redundant: it can be removed without affecting the span. In the present
section, we formalize this idea in the notion of linear independence.

Span{v, w}

v

w

Span{u, v, w}

v

w

u

Pictures of sets of vectors that are linearly dependent. Note that in each case, one
vector is in the span of the others—so it doesn’t make the span bigger.

3.2.1 The Definition of Linear Independence

Essential Definition. A set of vectors {v1, v2, . . . , vk} is linearly independent if
the vector equation

x1v1 + x2v2 + · · ·+ xkvk = 0

has only the trivial solution x1 = x2 = · · · = xk = 0. The set {v1, v2, . . . , vk} is
linearly dependent otherwise.

In other words, {v1, v2, . . . , vk} is linearly dependent if there exist numbers
x1, x2, . . . , xk, not all equal to zero, such that

x1v1 + x2v2 + · · ·+ xkvk = 0.

This is called a linear dependence relation or equation of linear dependence.

Note that linear dependence and linear independence are notions that apply
to a collection of vectors. It does not make sense to say things like “this vec-
tor is linearly dependent on these other vectors,” or “this matrix is linearly
independent.”

Example (Checking linear dependence). Is the set










1
1
1



 ,





1
−1

2



 ,





3
1
4










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linearly independent?

Solution. Equivalently, we are asking if the homogeneous vector equation

x





1
1
1



+ y





1
−1

2



+ z





3
1
4



=





0
0
0





has a nontrivial solution. We solve this by forming a matrix and row reducing (we
do not augment because of this observation in Section 3.1):





1 1 3
1 −1 1
1 2 4





row reduce
−−−−−→





1 0 2
0 1 1
0 0 0





This says x = −2z and y = −z. So there exist nontrivial solutions: for instance,
taking z = 1 gives this equation of linear dependence:

−2





1
1
1



−





1
−1

2



+





3
1
4



=





0
0
0



 .

Use this link to view the online demo

Move the sliders to solve the homogeneous vector equation in this example. Do you see
why the vectors need to be coplanar in order for there to exist a nontrivial solution?

Example (Checking linear independence). Is the set










1
1
−2



 ,





1
−1

2



 ,





3
1
4











linearly independent?

Solution. Equivalently, we are asking if the homogeneous vector equation

x





1
1
−2



+ y





1
−1

2



+ z





3
1
4



=





0
0
0





has a nontrivial solution. We solve this by forming a matrix and row reducing (we
do not augment because of this observation in Section 3.1):





1 1 3
1 −1 1
−2 2 4





row reduce
−−−−−→





1 0 0
0 1 0
0 0 1





https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=1,1,1&v2=1,-1,2&v3=3,1,4&target=0,0,0
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This says x = y = z = 0, i.e., the only solution is the trivial solution. We conclude
that the set is linearly independent.

Use this link to view the online demo

Move the sliders to solve the homogeneous vector equation in this example. Do you
see why the vectors would need to be coplanar in order for there to exist a nontrivial
solution?

Example (Vector parametric form). An important observation is that the vectors
coming from the parametric vector form of the solution of a matrix equation Ax = 0
are linearly independent. In this example in Section 3.1 we saw that the solution
set of Ax = 0 for

A=
�

1 −1 2
−2 2 −4

�

?

is

x =





x1

x2

x3



= x2





1
1
0



+ x3





−2
0
1



 .

Let’s explain why the vectors (1,1, 0) and (−2,0, 1) are linearly independent. Sup-
pose that





0
0
0



= x2





1
1
0



+ x3





−2
0
1



=





x2 − 2x3

x2

x3



 .

Comparing the second and third coordinates, we see that x2 = x3 = 0. This
reasoning will work in any example, since the entries corresponding to the free
variables are all equal to 1 or 0, and are only equal to 1 in one of the vectors. This
observation forms part of this theorem in Section 3.4.

https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=1,1,-2&v2=1,-1,2&v3=3,1,4&target=0,0,0&range=4
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The above examples lead to the following recipe.

Recipe: Checking linear independence. A set of vectors {v1, v2, . . . , vk} is
linearly independent if and only if the vector equation

x1v1 + x2v2 + · · ·+ xkvk = 0

has only the trivial solution, if and only if the matrix equation Ax = 0 has only
the trivial solution, where A is the matrix with columns v1, v2, . . . , vk:

A=





| | |
v1 v2 · · · vk

| | |



 .

This is true if and only if A has a pivot position in every column.
Solving the matrix equation Ax = 0 will either verify that the columns
v1, v2, . . . , vk are linearly independent, or will produce a linear dependence
relation by substituting any nonzero values for the free variables.

(Recall that Ax = 0 has a nontrivial solution if and only if A has a column
without a pivot: see this observation in Section 3.1.)

Suppose that A has more columns than rows. Then A cannot have a pivot in
every column (it has at most one pivot per row), so its columns are automatically
linearly dependent.

A wide matrix (a matrix with more columns than rows) has linearly dependent
columns.

For example, four vectors in R3 are automatically linearly dependent. Note
that a tall matrix may or may not have linearly independent columns.

Facts about linear independence.

1. Two vectors are linearly dependent if and only if they are collinear, i.e., one is
a scalar multiple of the other.

2. Any set containing the zero vector is linearly dependent.

3. If a subset of {v1, v2, . . . , vk} is linearly dependent, then {v1, v2, . . . , vk} is lin-
early dependent as well.

Proof.

1. If v1 = cv2 then v1 − cv2 = 0, so {v1, v2} is linearly dependent. In the other
direction, if x1v1 + x2v2 = 0 with x1 ̸= 0 (say), then v1 = −

x2
x1

v2.
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2. It is easy to produce a linear dependence relation if one vector is the zero
vector: for instance, if v1 = 0 then

1 · v1 + 0 · v2 + · · ·+ 0 · vk = 0.

3. After reordering, we may suppose that {v1, v2, . . . , vr} is linearly dependent,
with r < p. This means that there is an equation of linear dependence

x1v1 + x2v2 + · · ·+ x r vr = 0,

with at least one of x1, x2, . . . , x r nonzero. This is also an equation of lin-
ear dependence among {v1, v2, . . . , vk}, since we can take the coefficients of
vr+1, . . . , vk to all be zero.

With regard to the first fact, note that the zero vector is a multiple of any vector,
so it is collinear with any other vector. Hence facts 1 and 2 are consistent with each
other.

3.2.2 Criteria for Linear Independence

In this subsection we give two criteria for a set of vectors to be linearly indepen-
dent. Keep in mind, however, that the actual definition is above.

Theorem. A set of vectors {v1, v2, . . . , vk} is linearly dependent if and only if one of
the vectors is in the span of the other ones.

Any such vector may be removed without affecting the span.

Proof. Suppose, for instance, that v3 is in Span{v1, v2, v4}, so we have an equation
like

v3 = 2v1 −
1
2

v2 + 6v4.

We can subract v3 from both sides of the equation to get

0= 2v1 −
1
2

v2 − v3 + 6v4.

This is a linear dependence relation.
In this case, any linear combination of v1, v2, v3, v4 is already a linear combina-

tion of v1, v2, v4:

x1v1 + x2v2 + x3v3 + x4v4 = x1v1 + x2v2 + x3

�

2v1 −
1
2

v2 + 6v4

�

+ x4v4

= (x1 + 2x3)v1 +
�

x2 −
1
2

x3

�

v2 + (x4 + 6)v4.

Therefore, Span{v1, v2, v3, v4} is contained in Span{v1, v2, v4}. Any linear combina-
tion of v1, v2, v4 is also a linear combination of v1, v2, v3, v4 (with the v3-coefficient
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equal to zero), so Span{v1, v2, v4} is also contained in Span{v1, v2, v3, v4}, and thus
they are equal.

In the other direction, if we have a linear dependence relation like

0= 2v1 −
1
2

v2 + v3 − 6v4,

then we can move any nonzero term to the left side of the equation and divide by
its coefficient:

v1 =
1
2

�

1
2

v2 − v3 + 6v4

�

.

This shows that v1 is in Span{v2, v3, v4}.
We leave it to the reader to generalize this proof for any set of vectors.

Warning. In a linearly dependent set {v1, v2, . . . , vk}, it is not generally true
that any vector v j is in the span of the others, only that at least one of them is.

For example, the set
��1

0

�

,
�2

0

�

,
�0

1

�	

is linearly dependent, but
�0

1

�

is not in the
span of the other two vectors. Also see this figure below.

The previous theorem makes precise in what sense a set of linearly dependent
vectors is redundant.

Theorem (Increasing Span Criterion). A set of vectors {v1, v2, . . . , vk} is linearly
independent if and only if, for every j, the vector v j is not in Span{v1, v2, . . . , v j−1}.

Proof. It is equivalent to show that {v1, v2, . . . , vk} is linearly dependent if and only
if v j is in Span{v1, v2, . . . , v j−1} for some j. The “if” implication is an immediate
consequence of the previous theorem. Suppose then that {v1, v2, . . . , vk} is linearly
dependent. This means that some v j is in the span of the others. Choose the largest
such j. We claim that this v j is in Span{v1, v2, . . . , v j−1}. If not, then

v j = x1v1 + x2v2 + · · ·+ x j−1v j−1 + x j+1v j+1 + · · ·+ xkvk

with not all of x j+1, . . . , xk equal to zero. Suppose for simplicity that xk ̸= 0. Then
we can rearrange:

vk = −
1
xk

�

x1v1 + x2v2 + · · ·+ x j−1v j−1 − v j + x j+1v j+1 + · · ·+ xp−1vp−1

�

.

This says that vk is in the span of {v1, v2, . . . , vp−1}, which contradicts our assump-
tion that v j is the last vector in the span of the others.

We can rephrase this as follows:

If you make a set of vectors by adding one vector at a time, and if the span got
bigger every time you added a vector, then your set is linearly independent.
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3.2.3 Pictures of Linear Independence

A set containing one vector {v} is linearly independent when v ̸= 0, since x v = 0
implies x = 0.

Span{v}

v

A set of two noncollinear vectors {v, w} is linearly independent:

• Neither is in the span of the other, so we can apply the first criterion.

• The span got bigger when we added w, so we can apply the increasing span
criterion.
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Span{v}

Span{w}

v
w

The set of three vectors {v, w, u} below is linearly dependent:

• u is in Span{v, w}, so we can apply the first criterion.

• The span did not increase when we added u, so we can apply the increasing
span criterion.

In the picture below, note that v is in Span{u, w}, and w is in Span{u, v}, so we
can remove any of the three vectors without shrinking the span.

Span{v}

Span{w}
Span{v, w}

v
w

u
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Two collinear vectors are always linearly dependent:

• w is in Span{v}, so we can apply the first criterion.

• The span did not increase when we added w, so we can apply the increasing
span criterion.

Span{v}

v

w

These three vectors {v, w, u} are linearly dependent: indeed, {v, w} is already
linearly dependent, so we can use the third fact.



80 CHAPTER 3. SOLUTION SETS AND SUBSPACES

Span{v}

v

w

u

Interactive: Linear independence of two vectors in R2.

Use this link to view the online demo

Move the vector heads and the demo will tell you if they are linearly independent and
show you their span.

Interactive: Linear dependence of three vectors in R2.

Use this link to view the online demo

Move the vector heads and the demo will tell you that they are linearly dependent and
show you their span.

The two vectors {v, w} below are linearly independent because they are not
collinear.

https://ulrikbuchholtz.dk/ila/demos/spans.html?captions=indep&v1=2,1&v2=-1,-.5&labels=v,w&range=5&showPlane=true&closed
https://ulrikbuchholtz.dk/ila/demos/spans.html?captions=indep&v1=2,1&v2=-1,-.5&v3=0,-1.5&labels=v,w,u&range=5&showPlane=true&closed
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v

w

Span{v}

Span{w}

The three vectors {v, w, u} below are linearly independent: the span got bigger
when we added w, then again when we added u, so we can apply the increasing
span criterion.

v

w

u

Span{v}

Span{w}

Span{v, w}
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The three coplanar vectors {v, w, u} below are linearly dependent:

• u is in Span{v, w}, so we can apply the first criterion.

• The span did not increase when we added u, so we can apply the increasing
span criterion.

v

w

u

Span{v}

Span{w}

Span{v, w}

Note that three vectors are linearly dependent if and only if they are coplanar.
Indeed, {v, w, u} is linearly dependent if and only if one vector is in the span of the
other two, which is a plane (or a line) (or {0}).

The four vectors {v, w, u, x} below are linearly dependent: they are the columns
of a wide matrix. Note however that u is not contained in Span{v, w, x}. See this
warning.
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v

w

u
x

Span{v}

Span{w}

Span{v, w}

The vectors {v, w, u, x} are linearly dependent, but u is not contained in Span{v, w, x}.

Interactive: Linear independence of two vectors in R3.

Use this link to view the online demo

Move the vector heads and the demo will tell you if they are linearly independent and
show you their span.

Interactive: Linear independence of three vectors in R3.

Use this link to view the online demo

Move the vector heads and the demo will tell you if they are linearly independent and
show you their span.

3.2.4 Linear Dependence and Free Variables

In light of this important note and this criterion, it is natural to ask which columns
of a matrix are redundant, i.e., which we can remove without affecting the column
span.

https://ulrikbuchholtz.dk/ila/demos/spans.html?captions=indep&v1=2,-1,1&v2=1,0,-1&labels=v,w&range=5&closed
https://ulrikbuchholtz.dk/ila/demos/spans.html?captions=indep&v1=2,-1,1&v2=1,0,-1&v3=.5,-.5,1&labels=v,w,u&range=5&closed
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Pivotal theorem. Let v1, v2, . . . , vk be vectors in Rn, and consider the matrix

A=





| | |
v1 v2 · · · vk

| | |



 .

Then we can delete the columns of A without pivots (the columns corresponding to
the free variables), without changing Span{v1, v2, . . . , vk}.

The pivot columns are linearly independent, so we cannot delete any more columns
without changing the span.

Every non-pivot column belongs to the span of the pivot columns to its left, more
precisely, it is the linear combination with coefficients given by the non-pivot column
itself in the reduced row echelon form.

Proof. If the matrix is in reduced row echelon form:

A=





1 0 2 0
0 1 3 0
0 0 0 1





then the column without a pivot is visibly in the span of the pivot columns, with
only nonzero coefficients for the pivot columns to its left:





2
3
0



= 2





1
0
0



+ 3





0
1
0



+ 0





0
0
1



 ,

and the pivot columns are linearly independent:




0
0
0



= x1





1
0
0



+ x2





0
1
0



+ x4





0
0
1



=





x1

x2

x4



 =⇒ x1 = x2 = x4 = 0.

If the matrix is not in reduced row echelon form, then we row reduce:

A=





1 7 23 3
2 4 16 0
−1 −2 −8 4





RREF
−−→





1 0 2 0
0 1 3 0
0 0 0 1



 .

The following two vector equations have the same solution set, as they come from
row-equivalent matrices:

x1





1
2
−1



 + x2





7
4
−2



 + x3





23
16
−8



 + x4





3
0
4



 = 0

x1





1
0
0



 + x2





0
1
0



 + x3





2
3
0



 + x4





0
0
1



 = 0.
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We conclude that





23
16
−8



= 2





1
2
−1



+ 3





7
4
−2



+ 0





3
0
4





and that

x1





1
2
−1



+ x2





7
4
−2



+ x4





3
0
4



= 0

has only the trivial solution.

Note that it is necessary to row reduce A to find which are its pivot columns.
However, the span of the columns of the row reduced matrix is generally not equal
to the span of the columns of A: one must use the pivot columns of the original
matrix. See theorem in Section 3.4 for a restatement of the above theorem.

Example. The matrix

A=





1 2 0 −1
−2 −3 4 5

2 4 0 −2





has reduced row echelon form





1 0 −8 −7
0 1 4 3
0 0 0 0



 .

Therefore, the first two columns of A are the pivot columns, so we can delete the
others without changing the span:

Span











1
−2

2



 ,





2
−3

4











= Span











1
−2

2



 ,





2
−3

4



 ,





0
4
0



 ,





−1
5
−2











.

Moreover, the first two columns are linearly independent.
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Pivot Columns and Dimension. Let d be the number of pivot columns in the
matrix

A=





| | |
v1 v2 · · · vk

| | |



 .

• If d = 1 then Span{v1, v2, . . . , vk} is a line.

• If d = 2 then Span{v1, v2, . . . , vk} is a plane.

• If d = 3 then Span{v1, v2, . . . , vk} is a 3-space.

• Et cetera.

The number d is called the dimension of the span. We have already met this
notion informally in this important note in Section 3.1 and also in this impor-
tant note in Section 3.1. We will define this concept rigorously in Section 3.4.
There are multiple different spans of vectors associated to any given matrix, A.
For instance there is the span of the columns, and there is also the solution set
of Ax = 0. Each of these spans has a dimension, and these dimensions can be
different. Therefore we do not speak about the dimension of a matrix, since
it is ambiguous which dimension this is referring to.

3.3 Subspaces

Objectives

1. Learn the definition of a subspace.

2. Learn to determine whether or not a subset is a subspace.

3. Learn the most important examples of subspaces.

4. Learn to write a given subspace as a column space or null space.

5. Recipe: compute a spanning set for a null space.

6. Picture: whether a subset of R2 or R3 is a subspace or not.

7. Vocabulary: subspace, column space, null space.

In this section we discuss subspaces of Rn. A subspace turns out to be exactly the
same thing as a span, except we don’t have a particular set of spanning vectors in
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mind. This change in perspective is quite useful, as it is easy to produce subspaces
that are not obviously spans. For example, the solution set of the equation x +
3y + z = 0 is a span because the equation is homogeneous, but we would have to
compute the parametric vector form in order to write it as a span.

x + 3y + z = 0

(A subspace also turns out to be the same thing as the solution set of a homo-
geneous system of equations.)

3.3.1 Subspaces: Definition and Examples

Definition. A subset of Rn is any collection of points of Rn.

For instance, the unit circle

C =
�

(x , y) in R2
�

� x2 + y2 = 1
	

is a subset of R2.
Above we expressed C in set builder notation: in English, it reads “C is the set

of all ordered pairs (x , y) in R2 such that x2 + y2 = 1.”

Definition. A subspace of Rn is a subset V of Rn satisfying:

1. Non-emptiness: The zero vector is in V .

2. Closure under addition: If u and v are in V , then u+ v is also in V .

3. Closure under scalar multiplication: If v is in V and c is in R, then cv is
also in V .

As a consequence of these properties, we see:

• If v is a vector in V , then all scalar multiples of v are in V by the third
property. In other words the line through any nonzero vector in V is also
contained in V .

• If u, v are vectors in V and c, d are scalars, then cu, dv are also in V by the
third property, so cu + dv is in V by the second property. Therefore, all of
Span{u, v} is contained in V
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• Similarly, if v1, v2, . . . , vn are all in V , then Span{v1, v2, . . . , vn} is contained in
V . In other words, a subspace contains the span of any vectors in it.

If you choose enough vectors, then eventually their span will fill up V , so we al-
ready see that a subspace is a span. See this theorem below for a precise statement.

Remark. Suppose that V is a non-empty subset of Rn that satisfies properties 2
and 3. Let v be any vector in V . Then 0v = 0 is in V by the third property, so V
automatically satisfies property 1. It follows that the only subset of Rn that satisfies
properties 2 and 3 but not property 1 is the empty subset {}. This is why we call
the first property “non-emptiness”.

Example. The set Rn is a subspace of itself: indeed, it contains zero, and is closed
under addition and scalar multiplication.

Example. The set {0} containing only the zero vector is a subspace of Rn: it con-
tains zero, and if you add zero to itself or multiply it by a scalar, you always get
zero.

Example (A line through the origin). A line L through the origin is a subspace.

L

Indeed, L contains zero, and is easily seen to be closed under addition and
scalar multiplication.

Example (A plane through the origin). A plane P through the origin is a subspace.

P

Indeed, P contains zero; the sum of two vectors in P is also in P; and any scalar
multiple of a vector in P is also in P.
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Non-example (A line not containing the origin). A line L (or any other subset)
that does not contain the origin is not a subspace. It fails the first defining property:
every subspace contains the origin by definition.

Non-example (A circle). The unit circle C is not a subspace. It fails all three
defining properties: it does not contain the origin, it is not closed under addition,
and it is not closed under scalar multiplication. In the picture, one red vector is
the sum of the two black vectors (which are contained in C), and the other is a
scalar multiple of a black vector.

Non-example (The first quadrant). The first quadrant in R2 is not a subspace. It
contains the origin and is closed under addition, but it is not closed under scalar
multiplication (by negative numbers).
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Non-example (A line union a plane). The union of a line and a plane in R3 is not
a subspace. It contains the origin and is closed under scalar multiplication, but it
is not closed under addition: the sum of a vector on the line and a vector on the
plane is not contained in the line or in the plane.

Subsets versus Subspaces. A subset of Rn is any collection of vectors what-
soever. For instance, the unit circle

C =
�

(x , y) in R2
�

� x2 + y2 = 1
	

is a subset of R2, but it is not a subspace. In fact, all of the non-examples above
are still subsets of Rn. A subspace is a subset that happens to satisfy the three
additional defining properties.

In order to verify that a subset of Rn is in fact a subspace, one has to check the
three defining properties. That is, unless the subset has already been verified to
be a subspace: see this important note below.

Example (Verifying that a subset is a subspace). Let

V =
§�

a
b

�

in R2
�

� 2a = 3b
ª

.

Verify that V is a subspace.

Solution. First we point out that the condition “2a = 3b” defines whether or not
a vector is in V : that is, to say

�a
b

�

is in V means that 2a = 3b. In other words, a
vector is in V if twice its first coordinate equals three times its second coordinate.
So for instance,

�3
2

�

and
�1/2

1/3

�

are in V , but
�2

3

�

is not because 2 · 2 ̸= 3 · 3.

Let us check the first property. The subset V does contain the zero vector
�0

0

�

,
because 2 · 0= 3 · 0.

Next we check the second property. To show that V is closed under addition,
we have to check that for any vectors u=

�a
b

�

and v =
�c

d

�

in V , the sum u+ v is in
V . Since we cannot assume anything else about u and v, we must treat them as
unknowns.
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We have
�

a
b

�

+
�

c
d

�

=
�

a+ c
b+ d

�

.

To say that
�a+c

b+d

�

is contained in V means that 2(a + c) = 3(b + d), or 2a + 2c =
3b + 3d. The one thing we are allowed to assume about u and v is that 2a = 3b
and 2c = 3d, so we see that u+ v is indeed contained in V .

Next we check the third property. To show that V is closed under scalar multi-
plication, we have to check that for any vector v =

�a
b

�

in V and any scalar c in R,
the product cv is in V . Again, we must treat v and c as unknowns. We have

c
�

a
b

�

=
�

ca
cb

�

.

To say that
�ca

cb

�

is contained in V means that 2(ca) = 3(cb), i.e., that c ·2a = c ·3b.
The one thing we are allowed to assume about v is that 2a = 3b, so cv is indeed
contained in V .

Since V satisfies all three defining properties, it is a subspace. In fact, it is the
line through the origin with slope 2/3.

V

Example (Showing that a subset is not a subspace). Let

V =
§�

a
b

�

in R2
�

� ab = 0
ª

.

Is V a subspace?

Solution. First we point out that the condition “ab = 0” defines whether or not
a vector is in V : that is, to say

�a
b

�

is in V means that ab = 0. In other words, a
vector is in V if the product of its coordinates is zero, i.e., if one (or both) of its
coordinates are zero. So for instance,

�1
0

�

and
�0

2

�

are in V , but
�1

1

�

is not because
1 · 1 ̸= 0.
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Let us check the first property. The subset V does contain the zero vector
�0

0

�

,
because 0 · 0= 0.

Next we check the third property. To show that V is closed under scalar multi-
plication, we have to check that for any vector v =

�a
b

�

in V and any scalar c in R,
the product cv is in V . Since we cannot assume anything else about v and c, we
must treat them as unknowns.

We have

c
�

a
b

�

=
�

ca
cb

�

.

To say that
�ca

cb

�

is contained in V means that (ca)(cb) = 0. Rewriting, this means
c2(ab) = 0. The one thing we are allowed to assume about v is that ab = 0, so we
see that cv is indeed contained in V .

Next we check the second property. It turns out that V is not closed under
addition; to verify this, we must show that there exists some vectors u, v in V such
that u+ v is not contained in V . The easiest way to do so is to produce examples
of such vectors. We can take u=

�1
0

�

and v =
�0

1

�

; these are contained in V because
the products of their coordinates are zero, but

�

1
0

�

+
�

0
1

�

=
�

1
1

�

is not contained in V because 1 · 1 ̸= 0.
Since V does not satisfy the second property (it is not closed under addition),

we conclude that V is not a subspace. Indeed, it is the union of the two coordinate
axes, which is not a span.

V

3.3.2 Common Types of Subspaces

Theorem (Spans are Subspaces and Subspaces are Spans). If v1, v2, . . . , vp are any
vectors in Rn, then Span{v1, v2, . . . , vp} is a subspace of Rn. Moreover, any subspace
of Rn can be written as a span of a set of p linearly independent vectors in Rn for
p ≤ n.
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Proof. To show that Span{v1, v2, . . . , vp} is a subspace, we have to verify the three
defining properties.

1. The zero vector 0= 0v1 + 0v2 + · · ·+ 0vp is in the span.

2. If u = a1v1 + a2v2 + · · · + apvp and v = b1v1 + b2v2 + · · · + bpvp are in
Span{v1, v2, . . . , vp}, then

u+ v = (a1 + b1)v1 + (a2 + b2)v2 + · · ·+ (ap + bp)vp

is also in Span{v1, v2, . . . , vp}.

3. If v = a1v1+ a2v2+ · · ·+ apvp is in Span{v1, v2, . . . , vp} and c is a scalar, then

cv = ca1v1 + ca2v2 + · · ·+ capvp

is also in Span{v1, v2, . . . , vp}.

Since Span{v1, v2, . . . , vp} satisfies the three defining properties of a subspace, it is
a subspace.

Now let V be a subspace of Rn. If V is the zero subspace, then it is the span of
the empty set, so we may assume V is nonzero. Choose a nonzero vector v1 in V . If
V = Span{v1}, then we are done. Otherwise, there exists a vector v2 that is in V but
not in Span{v1}. Then Span{v1, v2} is contained in V , and by the increasing span
criterion in Section 3.2, the set {v1, v2} is linearly independent. If V = Span{v1, v2}
then we are done. Otherwise, we continue in this fashion until we have written
V = Span{v1, v2, . . . , vp} for some linearly independent set {v1, v2, . . . , vp}. This
process terminates after at most n steps by this important note in Section 3.2.

If V = Span{v1, v2, . . . , vp}, we say that V is the subspace spanned by or gen-
erated by the vectors v1, v2, . . . , vp. We call {v1, v2, . . . , vp} a spanning set for V .

Any matrix naturally gives rise to two subspaces.

Definition. Let A be an m× n matrix.

• The column space of A is the subspace of Rm spanned by the columns of A.
It is written Col(A).

• The null space of A is the subspace of Rn consisting of all solutions of the
homogeneous equation Ax = 0:

Nul(A) =
�

x in Rn
�

� Ax = 0
	

.

The column space is defined to be a span, so it is a subspace by the above
theorem. We need to verify that the null space is really a subspace. In Section 3.1
we already saw that the set of solutions of Ax = 0 is always a span, so the fact that
the null spaces is a subspace should not come as a surprise.

Proof. We have to verify the three defining properties. To say that a vector v is in
Nul(A) means that Av = 0.
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1. The zero vector is in Nul(A) because A0= 0.

2. Suppose that u, v are in Nul(A). This means that Au= 0 and Av = 0. Hence

A(u+ v) = Au+ Av = 0+ 0= 0

by the linearity of the matrix-vector product in Section 2.4. Therefore, u+ v
is in Nul(A).

3. Suppose that v is in Nul(A) and c is a scalar. Then

A(cv) = cAv = c · 0= 0

by the linearity of the matrix-vector product in Section 2.4, so cv is also in
Nul(A).

Since Nul(A) satisfies the three defining properties of a subspace, it is a subspace.

Example. Describe the column space and the null space of

A=





1 1
1 1
1 1



 .

Solution. The column space is the span of the columns of A:

Col(A) = Span











1
1
1



 ,





1
1
1











= Span











1
1
1











.

This is a line in R3.

Col(A)

The null space is the solution set of the homogeneous system Ax = 0. To
compute this, we need to row reduce A. Its reduced row echelon form is





1 1
0 0
0 0



 .
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This gives the equation x + y = 0, or

n x = −y
y = y

parametric vector form
−−−−−−−−−−−−→

�

x
y

�

= y
�

−1
1

�

.

Hence the null space is Span
��−1

1

�	

, which is a line in R2.

Nul(A)

Notice that the column space is a subspace of R3, whereas the null space is a
subspace of R2. This is because A has three rows and two columns.

The column space and the null space of a matrix are both subspaces, so they
are both spans. The column space of a matrix A is defined to be the span of the
columns of A. The null space is defined to be the solution set of Ax = 0, so this is
a good example of a kind of subspace that we can define without any spanning set
in mind. In other words, it is easier to show that the null space is a subspace than
to show it is a span—see the proof above. In order to do computations, however,
it is usually necessary to find a spanning set.

Null Spaces are Solution Sets. The null space of a matrix is the solution set of a
homogeneous system of equations. For example, the null space of the matrix

A=





1 7 2
−2 1 3

4 −2 −3





is the solution set of Ax = 0, i.e., the solution set of the system of equations
( x + 7y + 2z = 0
−2x + y + 3z = 0

4x − 2y − 3z = 0.

Conversely, the solution set of any homogeneous system of equations is precisely
the null space of the corresponding coefficient matrix.



96 CHAPTER 3. SOLUTION SETS AND SUBSPACES

To find a spanning set for the null space, one has to solve a system of homoge-
neous equations.

Recipe: Compute a spanning set for a null space. To find a spanning set
for Nul(A), compute the parametric vector form of the solutions to the homo-
geneous equation Ax = 0. The vectors attached to the free variables form a
spanning set for Nul(A).

Example (Two free variables). Find a spanning set for the null space of the matrix

A=
�

2 3 −8 −5
−1 2 −3 −8

�

.

Solution. We compute the parametric vector form of the solutions of Ax = 0.
The reduced row echelon form of A is

�

1 0 −1 2
0 1 −2 −3

�

.

The free variables are x3 and x4; the parametric form of the solution set is










x1 = x3 − 2x4

x2 = 2x3 + 3x4

x3 = x3

x4 = x4

parametric
−−−−−→
vector form







x1

x2

x3

x4






= x3







1
2
1
0






+ x4







−2
3
0
1






.

Therefore,

Nul(A) = Span

















1
2
1
0






,







−2
3
0
1

















.

Example (No free variables). Find a spanning set for the null space of the matrix

A=
�

1 3
2 4

�

.

Solution. We compute the parametric vector form of the solutions of Ax = 0.
The reduced row echelon form of A is

�

1 0
0 1

�

.

There are no free variables; hence the only solution of Ax = 0 is the trivial solution.
In other words,

Nul(A) = {0}= Span{0}.

It is natural to define Span{} = {0}, so that we can take our spanning set to be
empty. This is consistent with the definition of dimension in Section 3.4.
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Writing a subspace as a column space or a null space A subspace can be given
to you in many different forms. In practice, computations involving subspaces are
much easier if your subspace is the column space or null space of a matrix. The
simplest example of such a computation is finding a spanning set: a column space
is by definition the span of the columns of a matrix, and we showed above how
to compute a spanning set for a null space using parametric vector form. For this
reason, it is useful to rewrite a subspace as a column space or a null space before
trying to answer questions about it.

When asking questions about a subspace, it is usually best to rewrite the sub-
space as a column space or a null space.

This also applies to the question “is my subset a subspace?” If your subset is a
column space or null space of a matrix, then the answer is yes.

Example. Let

V =
§�

a
b

�

in R2
�

� 2a = 3b
ª

be the subset of a previous example. The subset V is exactly the solution set of the
homogeneous equation 2x − 3y = 0. Therefore,

V = Nul
�

2 −3
�

.

In particular, it is a subspace. The reduced row echelon form of
�

2 −3
�

is
�

1 −3/2
�

, so the parametric form of V is x = 3/2y , so the parametric vector
form is

�x
y

�

= y
�3/2

1

�

, and hence
��3/2

1

�	

spans V .

Example. Let V be the plane in R3 defined by

V =











2x + y
x − y

3x − 2y





�

� x , y are in R







.

Write V as the column space of a matrix.

Solution. Since




2x + y
x − y

3x − 2y



= x





2
1
3



+ y





1
−1
−2



 ,

we notice that V is exactly the span of the vectors




2
1
3



 and





1
−1
−2



 .

Hence

V = Col





2 1
1 −1
3 −2



 .
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3.4 Basis and Dimension

Objectives

1. Understand the definition of a basis of a subspace.

2. Understand the basis theorem.

3. Recipes: basis for a column space, basis for a null space, basis of a span.

4. Picture: basis of a subspace of R2 or R3.

5. Theorem: basis theorem.

6. Essential Vocabulary: basis, dimension.

3.4.1 Basis of a Subspace

As we discussed in Section 3.3, a subspace is the same as a span, except we do
not have a set of spanning vectors in mind. There are infinitely many choices
of spanning sets for a nonzero subspace; to avoid reduncancy, usually it is most
convenient to choose a spanning set with the minimal number of vectors in it. This
is the idea behind the notion of a basis.

Essential Definition. Let V be a subspace of Rn. A basis of V is a list of vectors
(v1, v2, . . . , vm) in V such that:

1. V = Span{v1, v2, . . . , vm}, and

2. the set {v1, v2, . . . , vm} is linearly independent.

Recall that a set of vectors is linearly independent if and only if, when you re-
move any vector from the set, the span shrinks (Theorem 3.2.10). In other words,
if (v1, v2, . . . , vm) is a basis of a subspace V , then no proper subset of {v1, v2, . . . , vm}
will span V : it is a minimal spanning set. Any subspace admits a basis by this the-
orem in Section 3.3.

Remark. Whether or not a list (v1, v2, . . . , vm) is a basis only depends on the set
{v1, v2, . . . , vm}, and often this set is referred to as the basis, and the list is called
an ordered basis. For abstract purposes, the order of the vectors in a basis doesn’t
make any difference, but for computing with bases, for example writing down
coordinate vectors and matrices with respect to a basis, as we’ll do shortly, the
order does matter.
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A nonzero subspace has infinitely many different bases, but they all contain
the same number of vectors.

We leave it as an exercise to prove that any two bases have the same number of
vectors; one might want to wait until after learning the invertible matrix theorem
in Section 4.5.

Essential Definition. Let V be a subspace of Rn. The number of vectors in any
basis of V is called the dimension of V , and is written dim V .

Example (A basis of R2). Find a basis of R2.

Solution. We need to find two vectors in R2 that span R2 and are linearly inde-
pendent. One such basis is

��1
0

�

,
�0

1

��

:

1. They span because any vector
�a

b

�

can be written as a linear combination of
�1

0

�

,
�0

1

�

:
�

a
b

�

= a
�

1
0

�

+ b
�

0
1

�

.

2. They are linearly independent: if

x
�

1
0

�

+ y
�

0
1

�

=
�

x
y

�

=
�

0
0

�

then x = y = 0.

This shows that the plane R2 has dimension 2.

�1
0

�

�0
1

�

Example (All bases of R2). Find all bases of R2.

Solution. We know from the previous example that R2 has dimension 2, so any
basis of R2 has two vectors in it. Let v1, v2 be vectors in R2, and let A be the matrix
with columns v1, v2.
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1. To say that {v1, v2} spans R2 means that A has a pivot in every row: see this
theorem in Section 2.4.

2. To say that {v1, v2} is linearly independent means that A has a pivot in every
column: see this important note in Section 3.2.

Since A is a 2 × 2 matrix, it has a pivot in every row exactly when it has a pivot
in every column. Hence any two noncollinear vectors form a basis of R2. For
example,

��

1
0

�

,
�

1
1

��

is a basis.

�1
0

�

�1
1

�

Example (The standard basis of Rn). One shows exactly as in the above example
that the standard coordinate vectors

e1 =













1
0
...
0
0













, e2 =













0
1
...

0
0













, . . . , en−1 =













0
0
...

1
0













, en =













0
0
...
0
1













form a basis for Rn. This is sometimes known as the standard basis.
In particular, Rn has dimension n.

Example. The previous example implies that any basis for Rn has n vectors in
it. Let v1, v2, . . . , vn be vectors in Rn, and let A be the n× n matrix with columns
v1, v2, . . . , vn.

1. To say that {v1, v2, . . . , vn} spans Rn means that A has a pivot position in every
row: see this theorem in Section 2.4.

2. To say that {v1, v2, . . . , vn} is linearly independent means that A has a pivot
position in every column: see this important note in Section 3.2.



3.4. BASIS AND DIMENSION 101

Since A is a square matrix, it has a pivot in every row if and only if it has a pivot
in every column. We will see in Section 4.5 that the above two conditions are
equivalent to the invertibility of the matrix A.

Example. Let

V =











x
y
z



 in R3
�

� x + 3y + z = 0







B =









−3
1
0



 ,





0
1
−3







 .

Verify that V is a subspace, and show directly that B is a basis for V .

Solution. First we observe that V is the solution set of the homogeneous equation
x +3y+z = 0, so it is a subspace: see this important note in Section 3.3. To show
that B is a basis, we really need to verify three things:

1. Both vectors are in V because

(−3) + 3(1) + (0) = 0
(0) + 3(1) + (−3) = 0.

2. Span: suppose that





x
y
z



 is in V . Since x+3y+z = 0 we have y = −1
3(x+z),

so




x
y
z



=





x
−1

3(x + z)
z



= −
x
3





−3
1
0



−
z
3





0
1
−3



 .

Hence B spans V .

3. Linearly independent:

c1





−3
1
0



+ c2





0
1
−3



= 0 =⇒





−3c1

c1 + c2

−3c2



=





0
0
0



 =⇒ c1 = c2 = 0.

Alternatively, one can observe that the two vectors are not collinear.

Since V has a basis with two vectors, it has dimension two: it is a plane.

Use this link to view the online demo

A picture of the plane V and its basis B = (v1, v2). Note that B spans V and is linearly
independent.

This example is somewhat contrived, in that we will learn systematic methods
for verifying that a subset is a basis. The intention is to illustrate the defining
properties of a basis.

https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=-3,1,0&v2=0,1,-3&range=5&captions=indep
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3.4.2 Computing a Basis for a Subspace

Now we show how to find bases for the column space of a matrix and the null
space of a matrix. In order to find a basis for a given subspace, it is usually best
to rewrite the subspace as a column space or a null space first: see this important
note in Section 3.3.

A basis for the column space First we show how to compute a basis for the
column space of a matrix.

Theorem. The pivot columns of a matrix A form a basis for Col(A).

Proof. This is a restatement of a pivotal theorem in Section 3.2.

The above theorem is referring to the pivot columns in the original matrix, not
its reduced row echelon form. Indeed, a matrix and its reduced row echelon
form generally have different column spaces. For example, in the matrix A
below:

A=
1 2 0 −1
−2 −3 4 5

2 4 0 −2

� �

RREF
−−→

1 0 −8 −7
0 1 4 3
0 0 0 0

� �

pivot columns = basis pivot columns in RREF

the pivot columns are the first two columns, so a basis for Col(A) is








1
−2

2



 ,





2
−3

4







 .

The first two columns of the reduced row echelon form certainly span a dif-
ferent subspace, as

Span











1
0
0



 ,





0
1
0











=











a
b
0





�

�

�

�

a, b in R







= (x y-plane),

but Col(A) contains vectors whose last coordinate is nonzero.

Corollary. The dimension of Col(A) is the number of pivots of A.
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A basis of a span Computing a basis for a span is the same as computing a basis
for a column space. Indeed, the span of finitely many vectors v1, v2, . . . , vm is the
column space of a matrix, namely, the matrix A whose columns are v1, v2, . . . , vm:

A=





| | |
v1 v2 · · · vm

| | |



 .

Example (A basis of a span). Find a basis of the subspace

V = Span











1
−2

2



 ,





2
−3

4



 ,





0
4
0



 ,





−1
5
−2











.

Solution. The subspace V is the column space of the matrix

A=





1 2 0 −1
−2 −3 4 5

2 4 0 −2



 .

The reduced row echelon form of this matrix is




1 0 −8 −7
0 1 4 3
0 0 0 0



 .

The first two columns are pivot columns, so a basis for V is








1
−2

2



 ,





2
−3

4







 .

Use this link to view the online demo

A picture of the plane V and its basis B = (v1, v2).

Example (Another basis of the same span). Find a basis of the subspace

V = Span











1
−2

2



 ,





2
−3

4



 ,





0
4
0



 ,





−1
5
−2











which does not consist of the first two vectors, as in the previous example.

Solution. The point of this example is that the above theorem gives one basis for
V ; as always, there are infinitely more.

https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=1,-2,2&v2=2,-3,4&range=6&captions=indep
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Reordering the vectors, we can express V as the column space of

A′ =





0 −1 1 2
4 5 −2 −3
0 −2 2 4



 .

The reduced row echelon form of this matrix is




1 0 3/4 7/4
0 1 −1 −2
0 0 0 0



 .

The first two columns are pivot columns, so a basis for V is










0
4
0



 ,





−1
5
−2











.

These are the last two vectors in the given spanning set.

Use this link to view the online demo

A picture of the plane V and its basis B = {v1, v2}.

A basis for the null space In order to compute a basis for the null space of a
matrix, one has to find the parametric vector form of the solutions of the homoge-
neous equation Ax = 0.

Theorem. The vectors attached to the free variables in the parametric vector form of
the solution set of Ax = 0 form a basis of Nul(A).

The proof of the theorem has two parts. The first part is that every solution lies
in the span of the given vectors. This is automatic: the vectors are exactly chosen
so that every solution is a linear combination of those vectors. The second part is
that the vectors are linearly independent. This part was discussed in this example
in Section 3.2.

A basis for a general subspace As mentioned at the beginning of this subsection,
when given a subspace written in a different form, in order to compute a basis it
is usually best to rewrite it as a column space or null space of a matrix.

Example (A basis of a subspace). Let V be the subspace defined by

V =











x
y
z





�

�

�

�

x + 2y = z







.

https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=0,4,0&v2=-1,5,-2&range=6&captions=indep
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Find a basis for V . What is dim(V )?

Solution. First we notice that V is exactly the solution set of the homogeneous
linear equation x + 2y − z = 0. Hence V = Nul

�

1 2 −1
�

. This matrix is in
reduced row echelon form; the parametric form of the general solution is x =
−2y + z, so the parametric vector form is





x
y
z



= y





−2
1
0



+ z





1
0
1



 .

It follows that a basis is








−2
1
0



 ,





1
0
1







 .

Since V has a basis with two vectors, its dimension is 2: it is a plane.

3.4.3 The Basis Theorem

Recall that (v1, v2, . . . , vn) forms a basis for Rn if and only if the matrix A with
columns v1, v2, . . . , vn has a pivot in every row and column (see this example).
Since A is an n×n matrix, these two conditions are equivalent: the vectors span if
and only if they are linearly independent. The basis theorem is an abstract version
of the preceding statement, that applies to any subspace.

Basis Theorem. Let V be a subspace of dimension m. Then:

• Any m linearly independent vectors in V form a basis for V .

• Any m vectors that span V form a basis for V .

Proof. Suppose that B = (v1, v2, . . . , vm) is a list of linearly independent vectors in
V . In order to show thatB is a basis for V , we must prove that V = Span{v1, v2, . . . , vm}.
If not, then there exists some vector vm+1 in V that is not contained in Span{v1, v2, . . . , vm}.
By the increasing span criterion in Section 3.2, the set {v1, v2, . . . , vm, vm+1} is also
linearly independent. Continuing in this way, we keep choosing vectors until we
eventually do have a linearly independent spanning set: say V = Span{v1, v2, . . . , vm, . . . , vm+k}.
Then (v1, v2, . . . , vm+k) is a basis for V , which implies that dim(V ) = m + k > m.
But we were assuming that V has dimension m, so B must have already been a
basis.

Now suppose that B = (v1, v2, . . . , vm) spans V . If B is not linearly independent,
then by this theorem in Section 3.2, we can remove some number of vectors from B
without shrinking its span. After reordering, we can assume that we removed the
last k vectors without shrinking the span, and that we cannot remove any more.
Now V = Span{v1, v2, . . . , vm−k}, and (v1, v2, . . . , vm−k) is a basis for V because it is
linearly independent. This implies that dim V = m−k < m. But we were assuming
that dim V = m, so B must have already been a basis.



106 CHAPTER 3. SOLUTION SETS AND SUBSPACES

In other words, if you already know that dim V = m, and if you have a list of
m vectors B = (v1, v2, . . . , vm) in V , then you only have to check one of:

1. B is linearly independent, or

2. B spans V ,

in order for B to be a basis of V . If you did not already know that dim V = m, then
you would have to check both properties.

To put it yet another way, suppose we have a list of vectors B = (v1, v2, . . . , vm)
in a subspace V . Then if any two of the following statements is true, the third
must also be true:

1. B is linearly independent,

2. B spans V , and

3. dim V = m.

For example, if V is a plane, then any two noncollinear vectors in V form a
basis.

Example (Two noncollinear vectors form a basis of a plane). Find a basis of the
subspace

V = Span











1
−2

2



 ,





2
−3

4



 ,





0
4
0



 ,





−1
5
−2











that is different from the bases in this example and this example.

Solution. We know from the previous examples that dim V = 2. By the basis
theorem, it suffices to find any two noncollinear vectors in V . We write two linear
combinations of the four given spanning vectors, chosen at random:

w1 =





1
−2

2



+





2
−3

4



=





3
−5

6



 w2 = −





2
−3

4



+
1
2





0
4
0



=





−2
5
−4



 .

Since w1, w2 are not collinear, B = (w1, w2) is a basis for V .

Use this link to view the online demo

A picture of the plane V and its basis B = (w1, w2).

Example (Finding a basis by inspection). Find a basis for the plane

V =











x1

x2

x3





�

�

�

�

x1 + x2 = x3







https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=3,-5,6&v2=-2,5,-4&range=6&captions=indep&labels=w1,w2
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by inspection. (This plane is expressed in set builder notation.)

Solution. First note that V is the null space of the matrix
�

1 1 −1
�

; this matrix
is in reduced row echelon form and has two free variables, so V is indeed a plane.
We write down two vectors satisfying x1 + x2 = x3:

v1 =





1
0
1



 v2 =





0
1
1



 .

Since v1 and v2 are not collinear, they are linearly independent; since dim(V ) = 2,
the basis theorem implies that (v1, v2) is a basis for V .

3.5 Bases as Coordinate Systems

Objectives

1. Learn to view a basis as a coordinate system on a subspace.

2. Recipes: compute the B-coordinates of a vector, compute the usual coordi-
nates of a vector from its B-coordinates.

3. Picture: the B-coordinates of a vector using its location on a nonstandard
coordinate grid.

4. Vocabulary: B-coordinates.

In this section, we interpret a basis of a subspace V as a coordinate system on
V , and we learn how to write a vector in V in that coordinate system.

Fact. If B = (v1, v2, . . . , vm) is a basis for a subspace V , then any vector x in V can
be written as a linear combination

x = c1v1 + c2v2 + · · ·+ cmvm

in exactly one way.

Proof. Recall that to say B is a basis for V means that B spans V and B is linearly
independent. Since B spans V , we can write any x in V as a linear combination
of v1, v2, . . . , vm. For uniqueness, suppose that we had two such expressions:

x = c1v1 + c2v2 + · · ·+ cmvm

x = c′1v1 + c′2v2 + · · ·+ c′mvm.

Subtracting the second equation from the first yields

0= x − x = (c1 − c′1)v1 + (c2 − c′2)v2 + · · ·+ (cm − c′m)vm.
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Since B is linearly independent, the only solution to the above equation is the
trivial solution: all the coefficients must be zero. It follows that ci = c′i for all i,
which proves that c1 = c′1, c2 = c′2, . . . , cm = c′m.

When we combine this observation with the pivotal theorem in Section 3.2,
we deduce the uniqueness of the reduced row echelon form, already stated in
this theorem in Section 2.2. Indeed, each non-pivot column in the reduced row
echelon form consists of the uniquely determined coefficients expressing it as a
linear combination of the pivot columns to its left, followed by zeros.

Example. Consider the standard basis of R3 from this example in Section 3.4:

e1 =





1
0
0



 , e2 =





0
1
0



 , e3 =





0
0
1



 .

According to the above fact, every vector in R3 can be written as a linear combi-
nation of e1, e2, e3, with unique coefficients. For example,

v =





3
5
−2



= 3





1
0
0



+ 5





0
1
0



 − 2





0
0
1



= 3e1 + 5e2 − 2e3.

In this case, the coordinates of v are exactly the coefficients of e1, e2, e3.

What exactly are coordinates, anyway? One way to think of coordinates is that
they give directions for how to get to a certain point from the origin. In the above
example, the linear combination 3e1+5e2−2e3 can be thought of as the following
list of instructions: start at the origin, travel 3 units north, then travel 5 units east,
then 2 units down.

Definition. Let B = (v1, v2, . . . , vm) be a basis of a subspace V , and let

x = c1v1 + c2v2 + · · ·+ cmvm

be a vector in V . The coefficients c1, c2, . . . , cm are the coordinates of x with
respect to B. The B-coordinate vector of x is the vector

B[x] =









c1

c2
...

cm









in Rm.

If we change the basis, then we can still give instructions for how to get to the
point (3,5,−2), but the instructions will be different. Say for example we take the
basis

v1 = e1 + e2 =





1
1
0



 , v2 = e2 =





0
1
0



 , v3 = e3 =





0
0
1



 .
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We can write (3,5,−2) in this basis as 3v1 + 2v2 − 2v3. In other words: start at
the origin, travel northeast 3 times as far as v1, then 2 units east, then 2 units
down. In this situation, we can say that “3 is the v1-coordinate of (3, 5,−2), 2 is
the v2-coordinate of (3,5,−2), and −2 is the v3-coordinate of (3,5,−2).”

The above definition gives a way of using Rm to label the points of a subspace of
dimension m: a point is simply labeled by its B-coordinate vector. For instance,
if we choose a basis for a plane, we can label the points of that plane with the
points of R2.

Example (A nonstandard coordinate system on R2). Define

v1 =
�

1
1

�

, v2 =
�

1
−1

�

, B = (v1, v2).

1. Verify that B is a basis for R2.

2. If B[w] =
�1

2

�

, then what is w?

3. Find the B-coordinates of v =
�5

3

�

.

Solution.

1. By the basis theorem in Section 3.4, any two linearly independent vectors
form a basis for R2. Clearly v1, v2 are not multiples of each other, so they are
linearly independent.

2. To say B[w] =
�1

2

�

means that 1 is the v1-coordinate of w, and that 2 is the
v2-coordinate:

w= v1 + 2v2 =
�

1
1

�

+ 2
�

1
−1

�

=
�

3
−1

�

.

3. We have to solve the vector equation v = c1v1 + c2v2 in the unknowns c1, c2.
We form an augmented matrix and row reduce:

�

1 1 5
1 −1 3

�

RREF
−−→

�

1 0 4
0 1 1

�

.

We have c1 = 4 and c2 = 1, so v = 4v1 + v2 and B[v] =
�4

1

�

.

In the following picture, we indicate the coordinate system defined by B by draw-
ing lines parallel to the “v1-axis” and “v2-axis”. Using this grid it is easy to see that
the B-coordinates of v are

�4
1

�

, and that the B-coordinates of w are
�1

2

�

.
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v1

v2 w

v

This picture could be the grid of streets in Palo Alto, California. Residents of
Palo Alto refer to northwest as “north” and to northeast as “east”. There is a reason
for this: the old road to San Francisco is called El Camino Real, and that road runs
from the southeast to the northwest in Palo Alto. So when a Palo Alto resident
says “go south two blocks and east one block”, they are giving directions from the
origin to the Whole Foods at w.

Use this link to view the online demo

A picture of the basis B = (v1, v2) of R2. The grid indicates the coordinate system
defined by the basis B; one set of lines measures the v1-coordinate, and the other set
measures the v2-coordinate. Use the sliders to find the B-coordinates of w.

Example. Let

v1 =





2
−1

1



 v2 =





1
0
−1



 .

These form a basis B for a plane V = Span{v1, v2} in R3. We indicate the coordinate
system defined by B by drawing lines parallel to the “v1-axis” and “v2-axis”:

https://www.google.com/maps/place/Palo+Alto,+CA/@37.4387098,-122.1548738,15.75z/data=!4m5!3m4!1s0x808fb07b9dba1c39:0xe1ff55235f576cf!8m2!3d37.4418834!4d-122.1430195?hl=en
https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=1,1&v2=1,-1&target=3,-1&range=6&&tlabel=w
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u1 u2

u3

u4

v1

v2

V

We can see from the picture that the v1-coordinate of u1 is equal to 1, as is the
v2-coordinate, so B[u1] =

�1
1

�

. Similarly, we have

B[u2] =
�

−1
1
2

�

B[u3] =

�

3
2
−1

2

�

B[u4] =
�

0
3
2

�

.

Use this link to view the online demo

Left: the B-coordinates of a vector x. Right: the vector x. The violet grid on the right
is a picture of the coordinate system defined by the basis B; one set of lines measures
the v1-coordinate, and the other set measures the v2-coordinate. Drag the heads of the
vectors x and B[x] to understand the correspondence between x and its B-coordinate
vector.

Example (A coordinate system on a plane). Define

v1 =





1
0
1



 , v2 =





1
1
1



 , B = (v1, v2), V = Span{v1, v2}.

1. Verify that B is a basis for V .

2. If B[w] =
�5

2

�

, then what is w?

3. Find the B-coordinates of v =





5
3
5



 .

Solution.

1. We need to verify that B spans V , and that it is linearly independent. By
definition, V is the span of B; since v1 and v2 are not multiples of each other,
they are linearly independent. This shows in particular that V is a plane.

https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?captions=basis&mat=2,1:-1,0:1,-1&range2=5
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2. To say B[w] =
�5

2

�

means that 5 is the v1-coordinate of w, and that 2 is the
v2-coordinate:

w= 5v1 + 2v2 = 5





1
0
1



+ 2





1
1
1



=





7
2
7



 .

3. We have to solve the vector equation v = c1v1 + c2v2 in the unknowns c1, c2.
We form an augmented matrix and row reduce:





1 1 5
0 1 3
1 1 5





RREF
−−→





1 0 2
0 1 3
0 0 0



 .

We have c1 = 2 and c2 = 3, so v = 2v1 + 3v2 and B[v] =
�2

3

�

.

Use this link to view the online demo

A picture of the plane V and the basis B = (v1, v2). The violet grid is a picture of the
coordinate system defined by the basis B; one set of lines measures the v1-coordinate,
and the other set measures the v2-coordinate. Use the sliders to find the B-coordinates
of v.

Example (A coordinate system on another plane). Define

v1 =





2
3
2



 , v2 =





−1
1
1



 , v3 =





2
8
6



 , V = Span{v1, v2, v3}.

1. Find a basis B for V .

2. Find the B-coordinates of x =





4
11

8



.

Solution.

1. We write V as the column space of a matrix A, then row reduce to find the
pivot columns, as in this example in Section 3.4.

A=





2 −1 2
3 1 8
2 1 6





RREF
−−→





1 0 2
0 1 2
0 0 0



 .

The first two columns are pivot columns, so we can take B = (v1, v2) as our
basis for V .

https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=1,0,1&v2=1,1,1&target=5,3,5&range=6&camera=-3,0,2&tlabel=v
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2. We have to solve the vector equation x = c1v1+c2v2. We form an augmented
matrix and row reduce:





2 −1 4
3 1 11
2 1 8





RREF
−−→





1 0 3
0 1 2
0 0 0



 .

We have c1 = 3 and c2 = 2, so x = 3v1 + 2v2, and thus B[x] =
�3

2

�

.

Use this link to view the online demo

A picture of the plane V and the basis B = (v1, v2). The violet grid is a picture of the
coordinate system defined by the basis B; one set of lines measures the v1-coordinate,
and the other set measures the v2-coordinate. Use the sliders to find the B-coordinates
of x.

Recipes: B-coordinates. If B = (v1, v2, . . . , vm) is a basis for a subspace V and
x is in V , then

B[x] =









c1

c2
...

cm









means x = c1v1 + c2v2 + · · ·+ cmvm.

Finding the B-coordinates of x means solving the vector equation

x = c1v1 + c2v2 + · · ·+ cmvm

in the unknowns c1, c2, . . . , cm. This generally means row reducing the aug-
mented matrix





| | | |
v1 v2 · · · vm x
| | | |



 .

Remark. Let B = (v1, v2, . . . , vm) be a basis of a subspace V . Finding the B-
coordinates of a vector x means solving the vector equation

x = c1v1 + c2v2 + · · ·+ cmvm.

If x is not in V , then this equation has no solution, as x is not in V = Span{v1, v2, . . . , vm}.
In other words, the above equation is inconsistent when x is not in V .

https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=2,3,2&v2=-1,1,1&target=4,11,8&tlabel=x&range=12&camera=.5,-3,2&tlabel=x
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3.6 The Rank Theorem

Objectives

1. Learn to understand and use the rank theorem.

2. Picture: the rank theorem.

3. Theorem: rank theorem.

4. Vocabulary: rank, nullity.

In this section we present the rank theorem, which is the culmination of all of
the work we have done so far.

The reader may have observed a relationship between the column space and
the null space of a matrix. In this example in Section 3.3, the column space and
the null space of a 3× 2 matrix are both lines, in R2 and R3, respectively:

Nul(A) Col(A)A=





1 1
1 1
1 1





In this example in Section 3.1, the null space of the 2× 3 matrix
�

1 −1 2
−2 2 −4

�

is
a plane in R3, and the column space the line in R2 spanned by

� 1
−2

�

:



3.6. THE RANK THEOREM 115

Col(A)
Nul(A)

A=
�

1 −1 2
−2 2 −4

�

In this example in Section 3.1, the null space of a 3× 3 matrix is a line in R3,
and the column space is a plane in R3:

Col(A)
Nul(A)

A=





1 0 −1
0 1 1
1 1 0





In all examples, the dimension of the column space plus the dimension of the
null space is equal to the number of columns of the matrix. This is the content of
the rank theorem.

Definition. The rank of a matrix A, written rank(A), is the dimension of the column
space Col(A).

The nullity of a matrix A, written nullity(A), is the dimension of the null space
Nul(A).

The rank of a matrix A gives us important information about the solutions to
Ax = b. Recall from this note in Section 2.4 that Ax = b is consistent exactly when
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b is in the span of the columns of A, in other words when b is in the column space
of A. Thus, rank(A) is the dimension of the set of b with the property that Ax = b
is consistent.

We know that the rank of A is equal to the number of pivot columns (see this
theorem in Section 3.4), and the nullity of A is equal to the number of free variables
(see this theorem in Section 3.4), which is the number of columns without pivots.
To summarize:

rank(A) = dim Col(A) = the number of columns with pivots

nullity(A) = dim Nul(A) = the number of free variables

= the number of columns without pivots

Clearly

#(columns with pivots)+#(columns without pivots)= #(columns),

so we have proved the following theorem.

Rank Theorem. If A is a matrix with n columns, then

rank(A) + nullity(A) = n.

In other words, for any consistent system of linear equations,

(dim of column span)+ (dim of solution set)= (number of variables).

The rank theorem theorem is really the culmination of this chapter, as it gives a
strong relationship between the null space of a matrix (the solution set of Ax = 0)
with the column space (the set of vectors b making Ax = b consistent), our two
primary objects of interest. The more freedom we have in choosing x the less
freedom we have in choosing b and vice versa.

Example (Rank and nullity). Here is a concrete example of the rank theorem and
the interplay between the degrees of freedom we have in choosing x and b in a
matrix equation Ax = b.

Consider the matrices

A=





1 0 0
0 1 0
0 0 0



 and B =





0 0 0
0 0 0
0 0 1



 .

If we multiply a vector (x , y, z) in R3 by A and B we obtain the vectors Ax = (x , y, 0)
and Bx = (0, 0, z). So we can think of multiplication by A as giving the latitude
and longitude of a point in R3 and we can think of multiplication by B as giving
the height of a point in R3. The rank of A is 2 and the nullity is 1. Similarly, the
rank of B is 1 and the nullity is 2.

These facts have natural interpretations. For the matrix A: the set of all lati-
tudes and longitudes in R3 is a plane, and the set of points with the same latitude



3.6. THE RANK THEOREM 117

and longitude in R3 is a line; and for the matrix B: the set of all heights in R3 is a
line, and the set of points at a given height in R3 is a plane. As the rank theorem
tells us, we “trade off” having more choices for x for having more choices for b,
and vice versa.

The rank theorem is a prime example of how we use the theory of linear algebra
to say something qualitative about a system of equations without ever solving it.
This is, in essence, the power of the subject.

Example (The rank is 2 and the nullity is 2). Consider the following matrix and
its reduced row echelon form:

A=
1 2 0 −1
−2 −3 4 5

2 4 0 −2

� �

RREF
−−→

1 0 −8 −7
0 1 4 3
0 0 0 0

� �

basis of Col(A) free variables

A basis for Col(A) is given by the pivot columns:










1
−2

2



 ,





2
−3

4











,

so rank(A) = dimCol(A) = 2.
Since there are two free variables x3, x4, the null space of A has two vectors

(see this theorem in Section 3.4):
















8
−4

1
0






,







7
−3

0
1

















,

so nullity(A) = 2.
In this case, the rank theorem says that 2 + 2 = 4, where 4 is the number of

columns.

Interactive: Rank is 1, nullity is 2.

Use this link to view the online demo

This 3 × 3 matrix has rank 1 and nullity 2. The violet plane on the left is the null
space, and the violet line on the right is the column space.

Interactive: Rank is 2, nullity is 1.

Use this link to view the online demo

This 3×3 matrix has rank 2 and nullity 1. The violet line on the left is the null space,
and the violet plane on the right is the column space.

https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?captions=rankthm
https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?mat=1,-1,2:-1,2,4&captions=rankthm
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3.7 Sums and Intersections of Subspaces

Objectives

1. Understand sums and intersections of subspaces.

2. Theorem: Grassmann’s formula.

3. Vocabulary: sum, intersection of subspaces.

In this section we discuss sums and intersections of subspaces, U+V and U∩V ,
and how to find bases for them given bases for U and V .

Definition. Suppose we’re given subspaces U and V of Rn. Then their sum is the
subspace consisting of sums u+ v where u ∈ U and v ∈ V :

U + V = {u+ v |u ∈ U , v ∈ V } ⊆ Rn

It is easy to see that U +V is indeed a subspace of Rn (exercise). If U = Col(A)
and V = Col(B), i.e., if U and V are given as spans of the columns of matrices A
and B, respectively, then U+V = Col

�

A B
�

where the matrix
�

A B
�

is obtained
by putting A and B side by side. In other words, to get a spanning set for U + V
we take the union of spanning sets for U and V

Definition. Suppose we’re given subspaces U and V of Rn. Then their intersection
is the subspace consisting of vectors that belong to both U and V :

U ∩ V = { x ∈ Rn | x ∈ U ∧ x ∈ V } ⊆ Rn

Again, it’s easy to see that U ∩ V is a subspace of Rn. This time, we have the
dual behavior as for sums: If U = Nul(A) and V = Nul(B), i.e., if U and V are given

as null spaces of matrices A and B, respectively, then U ∩ V = Nul
�

A
B

�

, where the

matrix
�

A
B

�

is obtained by putting A and B on top of each other. In other words, if

U and V are solution sets to homogeneous systems of linear equations, then U ∩V
is the solution set to the combined system of all the homogeneous linear equations
involved.

Grassmann’s formula. Suppose U and V are subspaces of Rn. Then

dim(U) + dim(V ) = dim(U + V ) + dim(U ∩ V ).
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Proof. Suppose dim(U) = k and dim(V ) = ℓ and pick bases for U and V . Collect
these together as matrices A and B with ranks k and ℓ so U = Col(A) and V =
Col(B). Then dim(U + V ) = dim(Col(

�

A B
�

)) = rank
�

A B
�

. By the pivotal
theorem in Section 3.2, the pivot columns of

�

A B
�

form a basis for U+V . Since
A has full rank, there is a pivot in first k columns, that is, the columns coming from
A. (Indeed, we must have dim(U) ≤ dim(U + V ).) The non-pivot columns give
us a basis for the null space of

�

A B
�

. This is because this null space consists

of (k + ℓ)-dimensional vectors
�

x
y

�

such that Ax + B y = 0, or equivalently, B y =

−Ax . So any such pair of coefficient vectors x and y gives an element of the
intersection U ∩ V = Col(A) ∩ Col(B). Conversely, if w ∈ U ∩ V , then we have
uniquely determined coefficient vectors x and y such that w= B y = −Ax .

Example. Here is a concrete example of Grassmann’s formula in action.
Consider the matrices

A=





1 0
0 1
0 0



 and B =





1 0
0 1
1 1



 .

These both have rank 2 and thus their column spaces are planes in R3. The com-
bined matrix,

�

A B
�

=





1 0 1 0
0 1 0 1
0 0 1 1



 ,

is already in (non-reduced) row echelon form, with rank 3, and its columns span all
of R3. To get a basis for the intersection Col(A)∩Col(B), we first take a basis vector
for Nul

�

A B
�

, using the fourth column as the only non-pivot column. Setting
w= 1 and solving for x , y, z, we get the vector







1
−1
−1

1






.

Using only the last two entries (corresponding to the width of B), we get the vector
�

−1
1

�

. The basis vector for the intersection is then

B
�

−1
1

�

= −A
�

1
−1

�

= A
�

−1
1

�

=





−1
1
0



 .
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Col(B) Col(A)



Chapter 4

Linear Transformations and Matrix
Algebra

Primary Goal. Learn about linear transformations and their relationship to ma-
trices.

In practice, one is often lead to ask questions about the geometry of a trans-
formation: a function that takes an input and produces an output. This kind of
question can be answered by linear algebra if the transformation can be expressed
by a matrix.

Example. Suppose you are building a robot arm with three joints that can move
its hand around a plane, as in the following picture.

�

x
y

�

= f (θ ,φ,ψ)

θ

φ

ψ

Define a transformation f as follows: f (θ ,φ,ψ) is the (x , y) position of the
hand when the joints are rotated by angles θ ,φ,ψ, respectively. The output of f
tells you where the hand will be on the plane when the joints are set at the given
input angles.

Unfortunately, this kind of function does not come from a matrix, so one cannot
use linear algebra to answer questions about this function. In fact, these functions
are rather complicated; their study is the subject of inverse kinematics.

121

https://en.wikipedia.org/wiki/Inverse_kinematics
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In this chapter, we will be concerned with the relationship between matrices
and transformations. In Section 4.1, we will consider the equation b = Ax as
a function with independent variable x and dependent variable b, and we draw
pictures accordingly. We spend some time studying transformations in the abstract,
and asking questions about a transformation, like whether it is one-to-one and/or
onto (Section 4.2). In Section 4.3 we will answer the question: “when exactly can
a transformation be expressed by a matrix?” We then present matrix multiplication
as a special case of composition of transformations (Section 4.4). This leads to the
study of matrix algebra: that is, to what extent one can do arithmetic with matrices
in the place of numbers. With this in place, we learn to solve matrix equations by
dividing by a matrix in Section 4.5.

4.1 Matrix Transformations

Objectives

1. Learn to view a matrix geometrically as a function.

2. Learn examples of matrix transformations: reflection, dilation, rotation, shear,
projection.

3. Understand the vocabulary surrounding transformations: domain, codomain,
range.

4. Understand the domain, codomain, and range of a matrix transformation.

5. Pictures: common matrix transformations.

6. Vocabulary: transformation / function, domain, codomain, range, iden-
tity transformation, matrix transformation.

In this section we learn to understand matrices geometrically as functions, or
transformations. We briefly discuss transformations in general, then specialize to
matrix transformations, which are transformations that come from matrices.

4.1.1 Matrices as Functions

Informally, a function is a rule that accepts inputs and produces outputs. For in-
stance, f (x) = x2 is a function that accepts one number x as its input, and outputs
the square of that number: f (2) = 4. In this subsection, we interpret matrices as
functions.

Let A be a matrix with m rows and n columns. Consider the matrix equation
b = Ax (we write it this way instead of Ax = b to remind the reader of the notation
y = f (x)). If we vary x , then b will also vary; in this way, we think of A as a
function with independent variable x and dependent variable b.
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• The independent variable (the input) is x , which is a vector in Rn.

• The dependent variable (the output) is b, which is a vector in Rm.

The set of all possible output vectors are the vectors b such that Ax = b has some
solution; this is the same as the column space of A by this note in Section 2.4.

Rn Rmb = Ax

x
Ax Col(A)

Interactive: A 2× 3 matrix.

Use this link to view the online demo

A picture of a 2× 3 matrix, regarded as a function. The input vector is x, which is a
vector in R3, and the output vector is b = Ax, which is a vector in R2. The violet line
on the right is the column space; as you vary x, the output b is constrained to lie on
this line.

Interactive: A 3× 2 matrix.

Use this link to view the online demo

A picture of a 3× 2 matrix, regarded as a function. The input vector is x, which is
a vector in R2, and the output vector is b = Ax, which is a vector in R3. The violet
plane on the right is the column space; as you vary x, the output b is constrained to
lie on this plane.

https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?show=false
https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?mat=1,0:0,1:1,0&range2=5&closed=true&show=false
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Example (Projection onto the x y-plane). Let

A=





1 0 0
0 1 0
0 0 0



 .

Describe the function b = Ax geometrically.

Solution. In the equation Ax = b, the input vector x and the output vector b are
both in R3. First we multiply A by a vector to see what it does:

A





x
y
z



=





1 0 0
0 1 0
0 0 0









x
y
z



=





x
y
0



 .

Multiplication by A simply sets the z-coordinate equal to zero: it projects vertically
onto the x y-plane.

Use this link to view the online demo

Multiplication by the matrix A projects a vector onto the x y-plane. Move the input
vector x to see how the output vector b changes.

Example (Reflection). Let

A=
�

−1 0
0 1

�

.

Describe the function b = Ax geometrically.

Solution. In the equation Ax = b, the input vector x and the output vector b are
both in R2. First we multiply A by a vector to see what it does:

A
�

x
y

�

=
�

−1 0
0 1

��

x
y

�

=
�

−x
y

�

.

Multiplication by A negates the x-coordinate: it reflects over the y-axis.

https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?mat=1,0,0:0,1,0:0,0,0&range2=5&closed=true
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b = Ax

Use this link to view the online demo

Multiplication by the matrix A reflects over the y-axis. Move the input vector x to see
how the output vector b changes.

Example (Dilation). Let

A=
�

1.5 0
0 1.5

�

.

Describe the function b = Ax geometrically.

Solution. In the equation Ax = b, the input vector x and the output vector b are
both in R2. First we multiply A by a vector to see what it does:

A
�

x
y

�

=
�

1.5 0
0 1.5

��

x
y

�

=
�

1.5x
1.5y

�

= 1.5
�

x
y

�

.

Multiplication by A is the same as scalar multiplication by 1.5: it scales or dilates
the plane by a factor of 1.5.

b = Ax

Use this link to view the online demo

Multiplication by the matrix A dilates the plane by a factor of 1.5. Move the input
vector x to see how the output vector b changes.

https://ulrikbuchholtz.dk/ila/demos/twobytwo.html?mat=-1,0,0,1&closed=true
https://ulrikbuchholtz.dk/ila/demos/twobytwo.html?mat=1.5,0,0,1.5&closed=true&pic=theo3.jpg
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Example (Identity). Let

A=
�

1 0
0 1

�

.

Describe the function b = Ax geometrically.

Solution. In the equation Ax = b, the input vector x and the output vector b are
both in R2. First we multiply A by a vector to see what it does:

A
�

x
y

�

=
�

1 0
0 1

��

x
y

�

=
�

x
y

�

.

Multiplication by A does not change the input vector at all: it is the identity trans-
formation which does nothing.

b = Ax

Use this link to view the online demo

Multiplication by the matrix A does not move the vector x: that is, b = Ax = x. Move
the input vector x to see how the output vector b changes.

Example (Rotation). Let

A=
�

0 −1
1 0

�

.

Describe the function b = Ax geometrically.

Solution. In the equation Ax = b, the input vector x and the output vector b are
both in R2. First we multiply A by a vector to see what it does:

A
�

x
y

�

=
�

0 −1
1 0

��

x
y

�

=
�

−y
x

�

.

We substitute a few test points in order to understand the geometry of the trans-
formation:

https://ulrikbuchholtz.dk/ila/demos/twobytwo.html?mat=1,0,0,1&closed=true&pic=theo11.jpg
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A
�

1
2

�

=
�

−2
1

�

A
�

−1
1

�

=
�

−1
−1

�

A
�

0
−2

�

=
�

2
0

�

Multiplication by A is counterclockwise rotation by 90◦.

b = Ax

Use this link to view the online demo

Multiplication by the matrix A rotates the vector x counterclockwise by 90◦. Move
the input vector x to see how the output vector b changes.

Example (Shear). Let

A=
�

1 1
0 1

�

.

Describe the function b = Ax geometrically.

Solution. In the equation Ax = b, the input vector x and the output vector b are
both in R2. First we multiply A by a vector to see what it does:

A
�

x
y

�

=
�

1 1
0 1

��

x
y

�

=
�

x + y
y

�

.

Multiplication by A adds the y-coordinate to the x-coordinate; this is called a shear
in the x-direction.

https://ulrikbuchholtz.dk/ila/demos/twobytwo.html?mat=0,-1,1,0&closed=true&pic=theo8.jpg
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b = Ax

Use this link to view the online demo

Multiplication by the matrix A adds the y-coordinate to the x-coordinate. Move the
input vector x to see how the output vector b changes.

4.1.2 Transformations

At this point it is convenient to fix our ideas and terminology regarding functions,
which we will call transformations in this book. This allows us to systematize our
discussion of matrices as functions.

Definition. A transformation from Rn to Rm is a rule T that assigns to each vector
x in Rn a vector T (x) in Rm.

• Rn is called the domain of T .

• Rm is called the codomain of T .

• For x in Rn, the vector T (x) in Rm is the image of x under T .

• The set of all images {T (x) | x in Rn} is the range of T .

The notation T : Rn −→ Rm means “T is a transformation from Rn to Rm.”

It may help to think of T as a “machine” that takes x as an input, and gives
you T (x) as the output.

https://ulrikbuchholtz.dk/ila/demos/twobytwo.html?mat=1,1,0,1&closed=true&pic=sheep.jpg
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Rn Rm

domain codomain

T

x

T (x)
range

T

The points of the domain Rn are the inputs of T : this simply means that it makes
sense to evaluate T on vectors with n entries, i.e., lists of n numbers. Likewise,
the points of the codomain Rm are the outputs of T : this means that the result of
evaluating T is always a vector with m entries.

The range of T is the set of all vectors in the codomain that actually arise as
outputs of the function T , for some input. In other words, the range is all vectors
b in the codomain such that T (x) = b has a solution x in the domain.

Example (A Function of one variable). Most of the functions you may have seen
previously have domain and codomain equal to R= R1. For example,

sin: R −→ R sin(x) =





the length of the opposite
edge over the hypotenuse of
a right triangle with angle x
in radians



 .

Notice that we have defined sin by a rule: a function is defined by specifying what
the output of the function is for any possible input.

You may be used to thinking of such functions in terms of their graphs:

x

(x , sin x)

In this case, the horizontal axis is the domain, and the vertical axis is the
codomain. This is useful when the domain and codomain are R, but it is hard
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to do when, for instance, the domain is R2 and the codomain is R3. The graph of
such a function is a subset of R5, which is difficult to visualize. For this reason, we
will rarely graph a transformation.

Note that the range of sin is the interval [−1, 1]: this is the set of all possible
outputs of the sin function.

Example (Functions of several variables). Here is an example of a function from
R2 to R3:

f
�

x
y

�

=





x + y
cos(y)
y − x2



 .

The inputs of f each have two entries, and the outputs have three entries. In this
case, we have defined f by a formula, so we evaluate f by substituting values for
the variables:

f
�

2
3

�

=





2+ 3
cos(3)
3− 22



=





5
cos(3)
−1



 .

Here is an example of a function from R3 to R3:

f (v) =

� the counterclockwise rotation
of v by an angle of 42◦ about
the z-axis

�

.

In other words, f takes a vector with three entries, then rotates it; hence the ouput
of f also has three entries. In this case, we have defined f by a geometric rule.

Definition. The identity transformation IdRn : Rn→ Rn is the transformation de-
fined by the rule

IdRn(x) = x for all x in Rn.

In other words, the identity transformation does not move its input vector: the
output is the same as the input. Its domain and codomain are both Rn, and its
range is Rn as well, since every vector in Rn is the output of itself.

Example (A real-world transformation: robotics). The definition of transforma-
tion and its associated vocabulary may seem quite abstract, but transformations
are extremely common in real life. Here is an example from the fields of robotics
and computer graphics.

Suppose you are building a robot arm with three joints that can move its hand
around a plane, as in the following picture.
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�

x
y

�

= f (θ ,φ,ψ)

θ

φ

ψ

Define a transformation f : R3→ R2 as follows: f (θ ,φ,ψ) is the (x , y) position
of the hand when the joints are rotated by angles θ ,φ,ψ, respectively. Evaluating
f tells you where the hand will be on the plane when the joints are set at the given
angles.

It is relatively straightforward to find a formula for f (θ ,φ,ψ) using some basic
trigonometry. If you want the robot to fetch your coffee cup, however, you have to
find the angles θ ,φ,ψ that will put the hand at the position of your beverage. It
is not at all obvious how to do this, and it is not even clear if the answer is unique!
You can ask yourself: “which positions on the table can my robot arm reach?” or
“what is the arm’s range of motion?” This is the same as asking: “what is the range
of f ?”

Unfortunately, this kind of function does not come from a matrix, so one cannot
use linear algebra to answer these kinds of questions. In fact, these functions are
rather complicated; their study is the subject of inverse kinematics.

4.1.3 Matrix Transformations

Now we specialize the general notions and vocabulary from the previous subsec-
tion to the functions defined by matrices that we considered in the first subsection.

Definition. Let A be an m×n matrix. The matrix transformation associated to A
is the transformation

T : Rn −→ Rm defined by T (x) = Ax .

This is the transformation that takes a vector x in Rn to the vector Ax in Rm.

If A has n columns, then it makes sense to multiply A only by vectors with n
entries. This is why the domain of T (x) = Ax is Rn. If A has m rows, then Ax has
m entries for any vector x in Rn; this is why the codomain of T (x) = Ax is Rm.

The definition of a matrix transformation T tells us how to evaluate T on any
given vector: we multiply the input vector by a matrix. For instance, let

A=
�

1 2 3
4 5 6

�

https://en.wikipedia.org/wiki/Inverse_kinematics


132 CHAPTER 4. LINEAR TRANSFORMATIONS AND MATRIX ALGEBRA

and let T (x) = Ax be the associated matrix transformation. Then

T





−1
−2
−3



= A





−1
−2
−3



=
�

1 2 3
4 5 6

�





−1
−2
−3



=
�

−14
−32

�

.

Suppose that A has columns v1, v2, . . . , vn. If we multiply A by a general vector
x , we get

Ax =





| | |
v1 v2 · · · vn

| | |













x1

x2
...

xn









= x1v1 + x2v2 + · · ·+ xnvn.

This is just a general linear combination of v1, v2, . . . , vn. Therefore, the outputs of
T (x) = Ax are exactly the linear combinations of the columns of A: the range of
T is the column space of A. See this note in Section 2.4.

Let A be an m×n matrix, and let T (x) = Ax be the associated matrix transfor-
mation.

• The domain of T is Rn, where n is the number of columns of A.

• The codomain of T is Rm, where m is the number of rows of A.

• The range of T is the column space of A.

Interactive: A 2× 3 matrix: reprise. Let

A=
�

1 −1 2
−2 2 4

�

,

and define T (x) = Ax . The domain of T is R3, and the codomain is R2. The range
of T is the column space; since all three columns are collinear, the range is a line
in R2.

Use this link to view the online demo

A picture of the matrix transformation T. The input vector is x, which is a vector in
R3, and the output vector is b = T (x) = Ax, which is a vector in R2. The violet line
on the right is the range of T ; as you vary x, the output b is constrained to lie on this
line.

Interactive: A 3× 2 matrix: reprise. Let

A=





1 0
0 1
1 0



 ,

https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?show=false
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and define T (x) = Ax . The domain of T is R2, and the codomain is R3. The range
of T is the column space; since A has two columns which are not collinear, the
range is a plane in R3.

Use this link to view the online demo

A picture of the matrix transformation T. The input vector is x, which is a vector in
R2, and the output vector is b = T (x) = Ax, which is a vector in R3. The violet plane
on the right is the range of T ; as you vary x, the output b is constrained to lie on this
plane.

Example (Projection onto the x y-plane: reprise). Let

A=





1 0 0
0 1 0
0 0 0



 ,

and let T (x) = Ax . What are the domain, the codomain, and the range of T?

Solution. Geometrically, the transformation T projects a vector directly “down”
onto the x y-plane in R3.

The inputs and outputs have three entries, so the domain and codomain are
both R3. The possible outputs all lie on the x y-plane, and every point on the x y-
plane is an output of T (with itself as the input), so the range of T is the x y-plane.

Be careful not to confuse the codomain with the range here. The range is a
plane, but it is a plane in R3, so the codomain is still R3. The outputs of T all have
three entries; the last entry is simply always zero.

In the case of an n× n square matrix, the domain and codomain of T (x) = Ax
are both Rn. In this situation, one can regard T as operating on Rn: it moves the
vectors around in the same space.

https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?mat=1,0:0,1:1,0&range2=5&closed=true&show=false
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Example (Matrix transformations of R2). In the first subsection we discussed the
transformations defined by several 2× 2 matrices, namely:

Reflection: A=
�

−1 0
0 1

�

Dilation: A=
�

1.5 0
0 1.5

�

Identity: A=
�

1 0
0 1

�

Rotation: A=
�

0 −1
1 0

�

Shear: A=
�

1 1
0 1

�

.

In each case, the associated matrix transformation T (x) = Ax has domain and
codomain equal to R2. The range is also R2, as can be seen geometrically (what
is the input for a given output?), or using the fact that the columns of A are not
collinear (so they form a basis for R2).

Example (Questions about a [matrix). transformation] Let

A=





1 1
0 1
1 1



 ,

and let T (x) = Ax , so T : R2→ R3 is a matrix transformation.

1. Evaluate T (u) for u=
�

3
4

�

.

2. Let

b =





7
5
7



 .

Find a vector v in R2 such that T (v) = b. Is there more than one?

3. Does there exist a vector w in R3 such that there is more than one v in R2

with T (v) = w?

4. Find a vector w in R3 which is not in the range of T .

Note: all of the above questions are intrinsic to the transformation T : they
make sense to ask whether or not T is a matrix transformation. See the next ex-
ample. As T is in fact a matrix transformation, all of these questions will translate
into questions about the corresponding matrix A.

Solution.
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1. We evaluate T (u) by substituting the definition of T in terms of matrix mul-
tiplication:

T
�

3
4

�

=





1 1
0 1
1 1





�

3
4

�

=





7
4
7



 .

2. We want to find a vector v such that b = T (v) = Av. In other words, we
want to solve the matrix equation Av = b. We form an augmented matrix
and row reduce:





1 1
0 1
1 1



 v =





7
5
7





augmented
matrix−−−−−−−→





1 1 7
0 1 5
1 1 7





row
reduce−−−−→





1 0 2
0 1 5
0 0 0



 .

This gives x = 2 and y = 5, so that there is a unique vector

v =
�

2
5

�

such that T (v) = b.

3. Translation: is there any vector w in R3 such that the solution set of Av = w
has more than one vector in it? The solution set of Ax = w, if non-empty,
is a translate of the solution set of Av = b above, which has one vector in
it. See this key observation in Section 3.1. It follows that the solution set of
Av = w can have at most one vector.

4. Translation: find a vector w such that the matrix equation Av = w is not
consistent. Notice that if we take

w=





1
2
3



 ,

then the matrix equation Av = w translates into the system of equations
( x + y = 1

y = 2
x + y = 3,

which is clearly inconsistent.

Example (Questions about a [non-matrix). transformation] Define a transforma-
tion T : R2→ R3 by the formula

T
�

x
y

�

=





ln(x)
cos(y)

ln(x)



 .
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1. Evaluate T (u) for u=
�

1
π

�

.

2. Let

b =





7
1
7



 .

Find a vector v in R2 such that T (v) = b. Is there more than one?

3. Does there exist a vector w in R3 such that there is more than one v in R2

with T (v) = w?

4. Find a vector w in R3 which is not in the range of T .

Note: we asked (almost) the exact same questions about a matrix transforma-
tion in the previous example. The point of this example is to illustrate the fact
that the questions make sense for a transformation that has no hope of coming
from a matrix. In this case, these questions do not translate into questions about
a matrix; they have to be answered in some other way.

Solution.

1. We evaluate T (u) using the defining formula:

T
�

1
π

�

=





ln(1)
cos(π)

ln(1)



=





0
−1

0



 .

2. We have

T
�

e7

2πn

�

=





ln(e7)
cos(2πn)

ln(e7)



=





7
1
7





for any whole number n. Hence there are infinitely many such vectors.

3. The vector b from the previous part is an example of such a vector.

4. Since cos(y) is always between −1 and 1, the vector

w=





0
2
0





is not in the range of T .
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4.2 One-to-one and Onto Transformations

Objectives

1. Understand the definitions of one-to-one and onto transformations.

2. Recipes: verify whether a matrix transformation is one-to-one and/or onto.

3. Pictures: examples of matrix transformations that are/are not one-to-one
and/or onto.

4. Vocabulary: one-to-one, onto.

In this section, we discuss two of the most basic questions one can ask about a
transformation: whether it is one-to-one and/or onto. For a matrix transformation,
we translate these questions into the language of matrices.

4.2.1 One-to-one Transformations

Definition (One-to-one transformations). A transformation T : Rn → Rm is one-
to-one if, for every vector b in Rm, the equation T (x) = b has at most one solution
x in Rn.

Remark. Another word for one-to-one is injective.

Here are some equivalent ways of saying that T is one-to-one:

• For every vector b in Rm, the equation T (x) = b has zero or one solution x
in Rn.

• Different inputs of T have different outputs.

• If T (u) = T (v) then u= v.

Rn RmT

x

y

z

T (x)

T (y)

T (z) range

one-to-one
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Here are some equivalent ways of saying that T is not one-to-one:

• There exists some vector b in Rm such that the equation T (x) = b has more
than one solution x in Rn.

• There are two different inputs of T with the same output.

• There exist vectors u, v such that u ̸= v but T (u) = T (v).

Rn RmT

x

y

z

T (x) = T (y)

T (z)

range

not one-to-one

Example (Functions of one variable). The function sin: R→ R is not one-to-one.
Indeed, sin(0) = sin(π) = 0, so the inputs 0 and π have the same output 0. In fact,
the equation sin(x) = 0 has infinitely many solutions . . . ,−2π,−π, 0,π, 2π, . . ..

The function exp: R → R defined by exp(x) = ex is one-to-one. Indeed, if
T (x) = T (y), then ex = e y , so ln(ex) = ln(e y), and hence x = y . The equation
T (x) = C has one solution x = ln(C) if C > 0, and it has zero solutions if C ≤ 0.

The function f : R→ R defined by f (x) = x3 is one-to-one. Indeed, if f (x) =
f (y) then x3 = y3; taking cube roots gives x = y . In other words, the only
solution of f (x) = C is x = 3pC .

The function f : R → R defined by f (x) = x3 − x is not one-to-one. Indeed,
f (0) = f (1) = f (−1) = 0, so the inputs 0, 1,−1 all have the same output 0. The
solutions of the equation x3− x = 0 are exactly the roots of f (x) = x(x−1)(x+1),
and this equation has three roots.

The function f : R→ R defined by f (x) = x2 is not one-to-one. Indeed, f (1) =
1= f (−1), so the inputs 1 and −1 have the same outputs. The function g : R→ R
defined by g(x) = |x | is not one-to-one for the same reason.

Example (A real-world transformation: robotics). Suppose you are building a
robot arm with three joints that can move its hand around a plane, as in this
example in Section 4.1.
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�

x
y

�

= f (θ ,φ,ψ)

θ

φ

ψ

Define a transformation f : R3→ R2 as follows: f (θ ,φ,ψ) is the (x , y) position
of the hand when the joints are rotated by angles θ ,φ,ψ, respectively. Asking
whether f is one-to-one is the same as asking whether there is more than one way
to move the arm in order to reach your coffee cup. (There is.)

Theorem (One-to-one matrix transformations). Let A be an m× n matrix, and let
T (x) = Ax be the associated matrix transformation. The following statements are
equivalent:

1. T is one-to-one.

2. For every b in Rm, the equation T (x) = b has at most one solution.

3. For every b in Rm, the equation Ax = b has a unique solution or is inconsistent.

4. Ax = 0 has only the trivial solution.

5. The columns of A are linearly independent.

6. A has a pivot in every column.

7. The range of T has dimension n.

Proof. Statements 1, 2, and 3 are translations of each other. The equivalence of
3 and 4 follows from this key observation in Section 3.1: if Ax = 0 has only one
solution, then Ax = b has only one solution as well, or it is inconsistent. The
equivalence of 4, 5, and 6 is a consequence of this important note in Section 3.2,
and the equivalence of 6 and 7 follows from the fact that the rank of a matrix is
equal to the number of columns with pivots.

Recall that equivalent means that, for a given matrix, either all of the statements
are true simultaneously, or they are all false.

Example (A matrix transformation that is one-to-one). Let A be the matrix

A=





1 0
0 1
1 0



 ,
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and define T : R2→ R3 by T (x) = Ax . Is T one-to-one?

Solution. The reduced row echelon form of A is




1 0
0 1
0 0



 .

Hence A has a pivot in every column, so T is one-to-one.

Use this link to view the online demo

A picture of the matrix transformation T. As you drag the input vector on the left
side, you see that different input vectors yield different output vectors on the right
side.

Example (A matrix transformation that is not one-to-one). Let

A=





1 0 0
0 1 0
0 0 0



 ,

and define T : R3 → R3 by T (x) = Ax . Is T one-to-one? If not, find two different
vectors u, v such that T (u) = T (v).

Solution. The matrix A is already in reduced row echelon form. It does not have
a pivot in every column, so T is not one-to-one. Therefore, we know from the
theorem that Ax = 0 has nontrivial solutions. If v is a nontrivial (i.e., nonzero)
solution of Av = 0, then T (v) = Av = 0 = A0 = T (0), so 0 and v are different
vectors with the same output. For instance,

T





0
0
1



=





1 0 0
0 1 0
0 0 0









0
0
1



= 0= T





0
0
0



 .

Geometrically, T is projection onto the x y-plane. Any two vectors that lie on
the same vertical line will have the same projection. For b on the x y-plane, the
solution set of T (x) = b is the entire vertical line containing b. In particular,
T (x) = b has infinitely many solutions.

Use this link to view the online demo

A picture of the matrix transformation T. The transformation T projects a vector
onto the x y-plane. The violet line is the solution set of T (x) = 0. If you drag x
along the violet line, the output T (x) = Ax does not change. This demonstrates that
T (x) = 0 has more than one solution, so T is not one-to-one.

https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?mat=1,0:0,1:1,0&range2=5&closed=true&show=true
https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?mat=1,0,0:0,1,0:0,0,0&range2=5&closed=true&lock=true&x=0,0,0
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Example (A matrix transformation that is not one-to-one). Let A be the matrix

A=
�

1 1 0
0 1 1

�

,

and define T : R3 → R2 by T (x) = Ax . Is T one-to-one? If not, find two different
vectors u, v such that T (u) = T (v).

Solution. The reduced row echelon form of A is
�

1 0 −1
0 1 1

�

.

There is not a pivot in every column, so T is not one-to-one. Therefore, we know
from the theorem that Ax = 0 has nontrivial solutions. If v is a nontrivial (i.e.,
nonzero) solution of Av = 0, then T (v) = Av = 0 = A0 = T (0), so 0 and v are
different vectors with the same output. In order to find a nontrivial solution, we
find the parametric form of the solutions of Ax = 0 using the reduced matrix above:

§

x − z = 0
y + z = 0

=⇒
n x = z

y = −z

The free variable is z. Taking z = 1 gives the nontrivial solution

T





1
−1

1



=
�

1 1 0
0 1 1

�





1
−1

1



= 0= T





0
0
0



 .

Use this link to view the online demo

A picture of the matrix transformation T. The violet line is the null space of A, i.e.,
solution set of T (x) = 0. If you drag x along the violet line, the output T (x) = Ax
does not change. This demonstrates that T (x) = 0 has more than one solution, so T
is not one-to-one.

Example (A matrix transformation that is not one-to-one). Let

A=
�

1 −1 2
−2 2 −4

�

,

and define T : R3 → R2 by T (x) = Ax . Is T one-to-one? If not, find two different
vectors u, v such that T (u) = T (v).

Solution. The reduced row echelon form of A is
�

1 −1 2
0 0 0

�

.

https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?mat=1,1,0:0,1,1&range2=5&closed=true&show=true&lock=true&x=0,0,0
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There is not a pivot in every column, so T is not one-to-one. Therefore, we know
from the theorem that Ax = 0 has nontrivial solutions. If v is a nontrivial (i.e.,
nonzero) solution of Av = 0, then T (v) = Av = 0 = A0 = T (0), so 0 and v are
different vectors with the same output. In order to find a nontrivial solution, we
find the parametric form of the solutions of Ax = 0 using the reduced matrix above:

x − y + 2z = 0 =⇒ x = y − 2z.

The free variables are y and z. Taking y = 1 and z = 0 gives the nontrivial solution

T





1
1
0



=
�

1 −1 2
−2 2 −4

�





1
1
0



= 0= T





0
0
0



 .

Use this link to view the online demo

A picture of the matrix transformation T. The violet plane is the solution set of
T (x) = 0. If you drag x along the violet plane, the output T (x) = Ax does not
change. This demonstrates that T (x) = 0 has more than one solution, so T is not
one-to-one.

The previous three examples can be summarized as follows. Suppose that
T (x) = Ax is a matrix transformation that is not one-to-one. By the theorem,
there is a nontrivial solution of Ax = 0. This means that the null space of A is not
the zero space. All of the vectors in the null space are solutions to T (x) = 0. If
you compute a nonzero vector v in the null space (by row reducing and finding
the parametric form of the solution set of Ax = 0, for instance), then v and 0 both
have the same output: T (v) = Av = 0= T (0).

Wide matrices do not have one-to-one transformations. If T : Rn → Rm is a
one-to-one matrix transformation, what can we say about the relative sizes of n
and m?

The matrix associated to T has n columns and m rows. Each row and each
column can only contain one pivot, so in order for A to have a pivot in every
column, it must have at least as many rows as columns: n≤ m.

This says that, for instance, R3 is “too big” to admit a one-to-one linear trans-
formation into R2.

Note that there exist tall matrices that are not one-to-one: for example,







1 0 0
0 1 0
0 0 0
0 0 0







does not have a pivot in every column.

https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?show=true&closed=true&lock=true&x=0,0,0
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4.2.2 Onto Transformations

Definition (Onto transformations). A transformation T : Rn → Rm is onto if, for
every vector b in Rm, the equation T (x) = b has at least one solution x in Rn.

Remark. Another word for onto is surjective.

Here are some equivalent ways of saying that T is onto:

• The range of T is equal to the codomain of T .

• Every vector in the codomain is the output of some input vector.

Rn

x

T (x)

range(T )

Rm = codomainT

onto

Here are some equivalent ways of saying that T is not onto:

• The range of T is smaller than the codomain of T .

• There exists a vector b in Rm such that the equation T (x) = b does not have
a solution.

• There is a vector in the codomain that is not the output of any input vector.

Rn

x

T (x)

range(T )

Rm = codomainT

not onto
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Example (Functions of one variable). The function sin: R→ R is not onto. Indeed,
taking b = 2, the equation sin(x) = 2 has no solution. The range of sin is the closed
interval [−1,1], which is smaller than the codomain R.

The function exp: R→ R defined by exp(x) = ex is not onto. Indeed, taking
b = −1, the equation exp(x) = ex = −1 has no solution. The range of exp is the
set (0,∞) of all positive real numbers.

The function f : R → R defined by f (x) = x3 is onto. Indeed, the equation
f (x) = x3 = b always has the solution x = 3p

b.
The function f : R→ R defined by f (x) = x3− x is onto. Indeed, the solutions

of the equation f (x) = x3 − x = b are the roots of the polynomial x3 − x − b; as
this is a cubic polynomial, it has at least one real root.

Example (A real-world transformation: robotics). The robot arm transformation
of this example is not onto. The robot cannot reach objects that are very far away.

Theorem (Onto matrix transformations). Let A be an m×n matrix, and let T (x) =
Ax be the associated matrix transformation. The following statements are equivalent:

1. T is onto.

2. T (x) = b has at least one solution for every b in Rm.

3. Ax = b is consistent for every b in Rm.

4. The columns of A span Rm.

5. A has a pivot in every row.

6. The range of T has dimension m.

Proof. Statements 1, 2, and 3 are translations of each other. The equivalence of 3,
4, 5, and 6 follows from this theorem in Section 2.4.

Example (A matrix transformation that is onto). Let A be the matrix

A=
�

1 1 0
0 1 1

�

,

and define T : R3→ R2 by T (x) = Ax . Is T onto?

Solution. The reduced row echelon form of A is
�

1 0 −1
0 1 1

�

.

Hence A has a pivot in every row, so T is onto.
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Use this link to view the online demo

A picture of the matrix transformation T. Every vector on the right side is the output
of T for a suitable input. If you drag b, the demo will find an input vector x with
output b.

Example (A matrix transformation that is not onto). Let A be the matrix

A=





1 0
0 1
1 0



 ,

and define T : R2→ R3 by T (x) = Ax . Is T onto? If not, find a vector b in R3 such
that T (x) = b has no solution.

Solution. The reduced row echelon form of A is




1 0
0 1
0 0



 .

Hence A does not have a pivot in every row, so T is not onto. In fact, since

T
�

x
y

�

=





1 0
0 1
1 0





�

x
y

�

=





x
y
x



 ,

we see that for every output vector of T , the third entry is equal to the first. There-
fore,

b = (1,2, 3)

is not in the range of T .

Use this link to view the online demo

A picture of the matrix transformation T. The range of T is the violet plane on the
right; this is smaller than the codomain R3. If you drag b off of the violet plane, then
the equation Ax = b becomes inconsistent; this means T (x) = b has no solution.

Example (A matrix transformation that is not onto). Let

A=
�

1 −1 2
−2 2 −4

�

,

and define T : R3→ R2 by T (x) = Ax . Is T onto? If not, find a vector b in R2 such
that T (x) = b has no solution.

https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?mat=1,1,0:0,1,1&range2=5&closed=true&show=false&x=1,2,.5
https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?mat=1,0:0,1:1,0&range2=5&closed=true&show=false
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Solution. The reduced row echelon form of A is

�

1 −1 2
0 0 0

�

.

There is not a pivot in every row, so T is not onto. The range of T is the column
space of A, which is equal to

Span
§�

1
−2

�

,
�

−1
2

�

,
�

2
−4

�ª

= Span
§�

1
−2

�ª

,

since all three columns of A are collinear. Therefore, any vector not on the line
through

� 1
−2

�

is not in the range of T . For instance, if b =
�1

1

�

then T (x) = b has
no solution.

Use this link to view the online demo

A picture of the matrix transformation T. The range of T is the violet line on the
right; this is smaller than the codomain R2. If you drag b off of the violet line, then
the equation Ax = b becomes inconsistent; this means T (x) = b has no solution.

The previous two examples illustrate the following observation. Suppose that
T (x) = Ax is a matrix transformation that is not onto. This means that range(T ) =
Col(A) is a subspace of Rm of dimension less than m: perhaps it is a line in the
plane, or a line in 3-space, or a plane in 3-space, etc. Whatever the case, the range
of T is very small compared to the codomain. To find a vector not in the range of
T , choose a random nonzero vector b in Rm; you have to be extremely unlucky
to choose a vector that is in the range of T . Of course, to check whether a given
vector b is in the range of T , you have to solve the matrix equation Ax = b to see
whether it is consistent.

Tall matrices do not have onto transformations. If T : Rn→ Rm is an onto matrix
transformation, what can we say about the relative sizes of n and m?

The matrix associated to T has n columns and m rows. Each row and each
column can only contain one pivot, so in order for A to have a pivot in every row,
it must have at least as many columns as rows: m≤ n.

This says that, for instance, R2 is “too small” to admit an onto linear transfor-
mation to R3.

Note that there exist wide matrices that are not onto: for example,

�

1 −1 2
−2 2 −4

�

does not have a pivot in every row.

https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?show=false&closed=true
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4.2.3 Comparison

The above expositions of one-to-one and onto transformations were written to
mirror each other. However, “one-to-one” and “onto” are complementary notions:
neither one implies the other. Below we have provided a chart for comparing the
two. In the chart, A is an m× n matrix, and T : Rn→ Rm is the matrix transforma-
tion T (x) = Ax .

T is one-to-one

T (x) = b has at most one solution
for every b.

The columns of A are linearly
independent.

A has a pivot in every column.

The range of T has dimension n.

T is onto

T (x) = b has at least one solution
for every b.

The columns of A span Rm.

A has a pivot in every row.

The range of T has dimension m.

Example (Functions of one variable). The function sin: R→ R is neither one-to-
one nor onto.

The function exp: R→ R defined by exp(x) = ex is one-to-one but not onto.
The function f : R→ R defined by f (x) = x3 is one-to-one and onto.
The function f : R→ R defined by f (x) = x3 − x is onto but not one-to-one.

Example (A matrix transformation that is neither one-to-one nor onto). Let

A=
�

1 −1 2
−2 2 −4

�

,

and define T : R3 → R2 by T (x) = Ax . This transformation is neither one-to-one
nor onto, as we saw in this example and this example.

Use this link to view the online demo

A picture of the matrix transformation T. The violet plane is the solution set of
T (x) = 0. If you drag x along the violet plane, the output T (x) = Ax does not
change. This demonstrates that T (x) = 0 has more than one solution, so T is not
one-to-one. The range of T is the violet line on the right; this is smaller than the
codomain R2. If you drag b off of the violet line, then the equation Ax = b becomes
inconsistent; this means T (x) = b has no solution.

Example (A matrix transformation that is one-to-one but not onto). Let A be the
matrix

A=





1 0
0 1
1 0



 ,

https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?show=true&closed=true
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and define T : R2 → R3 by T (x) = Ax . This transformation is one-to-one but not
onto, as we saw in this example and this example.

Use this link to view the online demo

A picture of the matrix transformation T. The range of T is the violet plane on
the right; this is smaller than the codomain R3. If you drag b off of the violet plane,
then the equation Ax = b becomes inconsistent; this means T (x) = b has no solution.
However, for b lying on the violet plane, there is a unique vector x such that T (x) = b.

Example (A matrix transformation that is onto but not one-to-one). Let A be the
matrix

A=
�

1 1 0
0 1 1

�

,

and define T : R3→ R2 by T (x) = Ax . This transformation is onto but not one-to-
one, as we saw in this example and this example.

Use this link to view the online demo

A picture of the matrix transformation T. Every vector on the right side is the output of
T for a suitable input. If you drag b, the demo will find an input vector x with output
b. The violet line is the null space of A, i.e., solution set of T (x) = 0. If you drag x
along the violet line, the output T (x) = Ax does not change. This demonstrates that
T (x) = 0 has more than one solution, so T is not one-to-one.

Example (Matrix transformations that are both one-to-one and onto). In this sub-
section in Section 4.1, we discussed the transformations defined by several 2× 2
matrices, namely:

Reflection: A=
�

−1 0
0 1

�

Dilation: A=
�

1.5 0
0 1.5

�

Identity: A=
�

1 0
0 1

�

Rotation: A=
�

0 −1
1 0

�

Shear: A=
�

1 1
0 1

�

.

In each case, the associated matrix transformation T (x) = Ax is both one-to-one
and onto. A 2× 2 matrix A has a pivot in every row if and only if it has a pivot in
every column (if and only if it has two pivots), so in this case, the transformation
T is one-to-one if and only if it is onto. One can see geometrically that they are

https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?mat=1,0:0,1:1,0&range2=5&closed=true&show=
https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?mat=1,1,0:0,1,1&range2=5&closed=true&show=true&x=1,2,.5


4.3. LINEAR TRANSFORMATIONS 149

onto (what is the input for a given output?), or that they are one-to-one using the
fact that the columns of A are not collinear.

Use this link to view the online demo

Counterclockwise rotation by 90◦ is a matrix transformation. This transformation is
onto (if b is a vector in R2, then it is the output vector for the input vector which is
b rotated clockwise by 90◦), and it is one-to-one (different vectors rotate to different
vectors).

One-to-one is the same as onto for square matrices. We observed in the previ-
ous example that a square matrix has a pivot in every row if and only if it has a
pivot in every column. Therefore, a matrix transformation T from Rn to itself is
one-to-one if and only if it is onto: in this case, the two notions are equivalent.

Conversely, by this note and this note, if a matrix transformation T : Rm→ Rn

is both one-to-one and onto, then m= n.

Note that in general, a transformation T is both one-to-one and onto if and
only if T (x) = b has exactly one solution for all b in Rm.

4.3 Linear Transformations

Objectives

1. Learn how to verify that a transformation is linear, or prove that a transfor-
mation is not linear.

2. Understand the relationship between linear transformations and matrix trans-
formations.

3. Recipe: compute the matrix of a linear transformation.

4. Theorem: linear transformations and matrix transformations.

5. Notation: the standard coordinate vectors e1, e2, . . ..

6. Vocabulary: linear transformation, standard matrix, identity matrix.

In Section 4.1, we studied the geometry of matrices by regarding them as func-
tions, i.e., by considering the associated matrix transformations. We defined some
vocabulary (domain, codomain, range), and asked a number of natural questions
about a transformation. For a matrix transformation, these translate into questions
about matrices, which we have many tools to answer.

https://ulrikbuchholtz.dk/ila/demos/twobytwo.html?mat=0,-1,1,0&closed=true&pic=theo8.jpg
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In this section, we make a change in perspective. Suppose that we are given a
transformation that we would like to study. If we can prove that our transformation
is a matrix transformation, then we can use linear algebra to study it. This raises
two important questions:

1. How can we tell if a transformation is a matrix transformation?

2. If our transformation is a matrix transformation, how do we find its matrix?

For example, we saw in this example in Section 4.1 that the matrix transformation

T : R2 −→ R2 T (x) =
�

0 −1
1 0

�

x

is a counterclockwise rotation of the plane by 90◦. However, we could have defined
T in this way:

T : R2 −→ R2 T (x) = the counterclockwise rotation of x by 90◦.

Given this definition, it is not at all obvious that T is a matrix transformation, or
what matrix it is associated to.

4.3.1 Linear Transformations: Definition

In this section, we introduce the class of transformations that come from matrices.

Definition. A linear transformation is a transformation T : Rn→ Rm satisfying

T (u+ v) = T (u) + T (v)
T (cu) = cT (u)

for all vectors u, v in Rn and all scalars c.

Let T : Rn→ Rm be a matrix transformation: T (x) = Ax for an m× n matrix A.
By this proposition in Section 2.4, we have

T (u+ v) = A(u+ v) = Au+ Av = T (u) + T (v)
T (cu) = A(cu) = cAu= cT (u)

for all vectors u, v in Rn and all scalars c. Since a matrix transformation satisfies
the two defining properties, it is a linear transformation

We will see in the next subsection that the opposite is true: every linear trans-
formation is a matrix transformation; we just haven’t computed its matrix yet.

Facts about linear transformations. Let T : Rn → Rm be a linear transformation.
Then:

1. T (0) = 0.
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2. For any vectors v1, v2, . . . , vk in Rn and scalars c1, c2, . . . , ck, we have

T
�

c1v1 + c2v2 + · · ·+ ckvk

�

= c1T (v1) + c2T (v2) + · · ·+ ckT (vk).

Proof.

1. Since 0= −0, we have

T (0) = T (−0) = −T (0)

by the second defining property. The only vector w such that w= −w is the
zero vector.

2. Let us suppose for simplicity that k = 2. Then

T (c1v1 + c2v2) = T (c1v1) + T (c2v2) first property

= c1T (v1) + c2T (v2) second property.

In engineering, the second fact is called the superposition principle; it should
remind you of the distributive property. For example, T (cu+dv) = cT (u)+dT (v)
for any vectors u, v and any scalars c, d. To restate the first fact:

A linear transformation necessarily takes the zero vector to the zero vector.

Example (A non-linear transformation). Define T : R→ R by T (x) = x + 1. Is T
a linear transformation?

Solution. We have T (0) = 0+1= 1. Since any linear transformation necessarily
takes zero to zero by the above important note, we conclude that T is not linear
(even though its graph is a line).

Note: in this case, it was not necessary to check explicitly that T does not satisfy
both defining properties: since T (0) = 0 is a consequence of these properties, at
least one of them must not be satisfied. (In fact, this T satisfies neither.)

Example (Verifying linearity: dilation). Define T : R2→ R2 by T (x) = 1.5x . Verify
that T is linear.

Solution. We have to check the defining properties for all vectors u, v and all
scalars c. In other words, we have to treat u, v, and c as unknowns. The only thing
we are allowed to use is the definition of T .

T (u+ v) = 1.5(u+ v) = 1.5u+ 1.5v = T (u) + T (v)
T (cu) = 1.5(cu) = c(1.5u) = cT (u).

Since T satisfies both defining properties, T is linear.
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Note: we know from this example in Section 4.1 that T is a matrix transforma-
tion: in fact,

T (x) =
�

1.5 0
0 1.5

�

x .

Since a matrix transformation is a linear transformation, this is another proof that
T is linear.

Example (Verifying linearity: rotation). Define T : R2→ R2 by

T (x) = the vector x rotated counterclockwise by the angle θ .

Verify that T is linear.

Solution. Since T is defined geometrically, we give a geometric argument. For
the first property, T (u) + T (v) is the sum of the vectors obtained by rotating u
and v by θ . On the other side of the equation, T (u+ v) is the vector obtained by
rotating the sum of the vectors u and v. But it does not matter whether we sum
or rotate first, as the following picture shows.

u

vu+ v

T

T (u)

T (v)
T (u+ v)

θ

For the second property, cT (u) is the vector obtained by rotating u by the angle
θ , then changing its length by a factor of c (reversing direction of c < 0. On the
other hand, T (cu) first changes the length of c, then rotates. But it does not matter
in which order we do these two operations.

u cu

T

T (u)
T (cu)

θ

This verifies that T is a linear transformation. We will find its matrix in the
next subsection. Note however that it is not at all obvious that T can be expressed
as multiplication by a matrix.
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Example (A transformation defined by a formula). Define T : R2 → R3 by the
formula

T
�

x
y

�

=





3x − y
y
x



 .

Verify that T is linear.

Solution. We have to check the defining properties for all vectors u, v and all
scalars c. In other words, we have to treat u, v, and c as unknowns; the only thing
we are allowed to use is the definition of T . Since T is defined in terms of the
coordinates of u, v, we need to give those names as well; say u=

�x1
y1

�

and v =
�x2

y2

�

.
For the first property, we have

T
��

x1

y1

�

+
�

x2

y2

��

= T
�

x1 + x2

y1 + y2

�

=





3(x1 + x2)− (y1 + y2)
y1 + y2

x1 + x2





=





(3x1 − y1) + (3x2 − y2)
y1 + y2

x1 + x2





=





3x1 − y1

y1

x1



+





3x2 − y2

y2

x2



= T
�

x1

y1

�

+ T
�

x2

y2

�

.

For the second property,

T
�

c
�

x1

y1

��

= T
�

cx1

c y1

�

=





3(cx1)− (c y1)
c y1

cx1





=





c(3x1 − y1)
c y1

cx1



= c





3x1 − y1

y1

x1



= cT
�

x1

y1

�

.

Since T satisfies the defining properties, T is a linear transformation.
Note: we will see in this example below that

T
�

x
y

�

=





3 −1
0 1
1 0





�

x
y

�

.

Hence T is in fact a matrix transformation.

One can show that, if a transformation is defined by formulas in the coordi-
nates as in the above example, then the transformation is linear if and only if each
coordinate is a linear expression in the variables with no constant term.
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Example (A translation). Define T : R3→ R3 by

T (x) = x +





1
2
3



 .

This kind of transformation is called a translation. As in a previous example, this
T is not linear, because T (0) is not the zero vector.

Example (More non-linear transformations). Verify that the following transfor-
mations from R2 to R2 are not linear:

T1

�

x
y

�

=
�

|x |
y

�

T2

�

x
y

�

=
�

x y
y

�

T3

�

x
y

�

=
�

2x + 1
x − 2y

�

.

Solution. In order to verify that a transformation T is not linear, we have to
show that T does not satisfy at least one of the two defining properties. For the
first, the negation of the statement “T (u+ v) = T (u) + T (v) for all vectors u, v” is
“there exists at least one pair of vectors u, v such that T (u + v) ̸= T (u) + T (v).”
In other words, it suffices to find one example of a pair of vectors u, v such that
T (u+ v) ̸= T (u) + T (v). Likewise, for the second, the negation of the statement
“T (cu) = cT (u) for all vectors u and all scalars c” is “there exists some vector u
and some scalar c such that T (cu) ̸= cT (u).” In other words, it suffices to find one
vector u and one scalar c such that T (cu) ̸= cT (u).

For the first transformation, we note that

T1

�

−
�

1
0

��

= T1

�

−1
0

�

=
�

| − 1|
0

�

=
�

1
0

�

but that

−T1

�

1
0

�

= −
�

|1|
0

�

= −
�

1
0

�

=
�

−1
0

�

.

Therefore, this transformation does not satisfy the second property.
For the second transformation, we note that

T2

�

2
�

1
1

��

= T2

�

2
2

�

=
�

2 · 2
2

�

=
�

4
2

�

but that

2T2

�

1
1

�

= 2
�

1 · 1
1

�

= 2
�

1
1

�

=
�

2
2

�

.

Therefore, this transformation does not satisfy the second property.
For the third transformation, we observe that

T3

�

0
0

�

=
�

2(0) + 1
0− 2(0)

�

=
�

1
0

�

̸=
�

0
0

�

.

Since T3 does not take the zero vector to the zero vector, it cannot be linear.
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When deciding whether a transformation T is linear, generally the first thing
to do is to check whether T (0) = 0; if not, T is automatically not linear. Note
however that the non-linear transformations T1 and T2 of the above example do
take the zero vector to the zero vector.

Challenge. Find an example of a transformation that satisfies the first property of
linearity but not the second.

4.3.2 Kernel and image

Definition. If T : Rn → Rm is a linear transformation, then we define two associ-
ated subspaces:

ker(T ) = { x ∈ Rn | T (x) = 0 } ⊆ Rn,

im(T ) = { T (x) | x ∈ Rn }= { y ∈ Rm | ∃x ∈ Rn.T (x) = y } ⊆ Rm.

Here, ker(T ) is called the kernel of T and im(T ) is called the image of T .

Thus, the image is just another name for the range of T , but the name image
is more commonly used in the context of linear maps. Note that if T is a matrix
transformation, T (x) = Ax for an m× n matrix A, then

ker(T ) = Nul(A) and im(T ) = Col(A).

Definition. The rank of a linear transformation T , written rank(T ), is the dimen-
sion of the image im(T ).

The nullity of a linear transformation T , written nullity(T ), is the dimension
of the kernel ker(T ).

4.3.3 The Standard Coordinate Vectors

In the next subsection, we will present the relationship between linear transfor-
mations and matrix transformations. Before doing so, we need the following im-
portant notation.

Standard coordinate vectors. The standard coordinate vectors in Rn are
the n vectors

e1 =













1
0
...

0
0













, e2 =













0
1
...

0
0













, . . . , en−1 =













0
0
...

1
0













, en =













0
0
...
0
1













.

The ith entry of ei is equal to 1, and the other entries are zero.
From now on, for the rest of the book, we will use the symbols e1, e2, . . . to
denote the standard coordinate vectors.

There is an ambiguity in this notation: one has to know from context that e1 is
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meant to have n entries. That is, the vectors

�

1
0

�

and





1
0
0





may both be denoted e1, depending on whether we are discussing vectors in R2 or
in R3.

The standard coordinate vectors in R2 and R3 are pictured below.

e1

e2

in R2 in R3

e1

e2

e3

These are the vectors of length 1 that point in the positive directions of each
of the axes.

Multiplying a matrix by the standard coordinate vectors. If A is an m×n matrix
with columns v1, v2, . . . , vn, then Aei = vi for each i = 1,2, . . . , n:





| | |
v1 v2 · · · vn

| | |



 ei = vi.

In other words, multiplying a matrix by ei simply selects its ith column.

For example,




1 2 3
4 5 6
7 8 9









1
0
0



=





1
4
7









1 2 3
4 5 6
7 8 9









0
1
0



=





2
5
8









1 2 3
4 5 6
7 8 9









0
0
1



=





3
6
9



 .

Definition. The n× n identity matrix is the matrix In whose columns are the n
standard coordinate vectors in Rn:

In =













1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1













.

We will see in this example below that the identity matrix is the matrix of the
identity transformation.
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4.3.4 The Matrix of a Linear Transformation

Now we can prove that every linear transformation is a matrix transformation, and
we will show how to compute the matrix.

Theorem (The matrix of a linear transformation). Let T : Rn → Rm be a linear
transformation. Let A be the m× n matrix

A=





| | |
T (e1) T (e2) · · · T (en)
| | |



 .

Then T is the matrix transformation associated with A: that is, T (x) = Ax. We write
A= [T].

Proof. We suppose for simplicity that T is a transformation from R3 to R2. Let A
be the matrix given in the statement of the theorem. Then

T





x
y
z



;= T



x





1
0
0



+ y





0
1
0



+ z





0
0
1









= T
�

xe1 + ye2 + ze3

�

= x T (e1) + yT (e2) + zT (e3)

=





| | |
T (e1) T (e2) T (e3)
| | |









x
y
z





= A





x
y
z



 .

The matrix A in the above theorem is called the standard matrix for T . The
columns of A are the vectors obtained by evaluating T on the n standard coordinate
vectors in Rn. To summarize part of the theorem:

Matrix transformations are the same as linear transformations.

Dictionary. Linear transformations are the same as matrix transformations, which
come from matrices. The correspondence can be summarized in the following
dictionary.

T : Rn→ Rm

Linear transformation
−−−→ m× n matrix A=





| | |
T (e1) T (e2) · · · T (en)
| | |





T : Rn→ Rm

T (x) = Ax
←−−− m× n matrix A
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Example (The matrix of a dilation). Define T : R2→ R2 by T (x) = 1.5x . Find the
standard matrix A for T .

Solution. The columns of A are obtained by evaluating T on the standard coor-
dinate vectors e1, e2.

T (e1) = 1.5e1 =
�

1.5
0

�

T (e2) = 1.5e2 =
�

0
1.5

�















=⇒ A=
�

1.5 0
0 1.5

�

.

This is the matrix we started with in this example in Section 4.1.

Example (The matrix of a rotation). Define T : R2→ R2 by

T (x) = the vector x rotated counterclockwise by the angle θ .

Find the standard matrix for T .

Solution. The columns of A are obtained by evaluating T on the standard coor-
dinate vectors e1, e2. In order to compute the entries of T (e1) and T (e2), we have
to do some trigonometry.

e1

T (e1)

θ

sinθ

cosθ

e2

T (e2)

θcosθ

sinθ

We see from the picture that

T (e1) =
�

cosθ
sinθ

�

T (e2) =
�

− sinθ
cosθ

�















=⇒ A=
�

cosθ − sinθ
sinθ cosθ

�

We saw in the above example that the matrix for counterclockwise rotation of
the plane by an angle of θ is

A=
�

cosθ − sinθ
sinθ cosθ

�

.
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Example (A transformation defined by a formula). Define T : R2 → R3 by the
formula

T
�

x
y

�

=





3x − y
y
x



 .

Find the standard matrix for T .

Solution. We substitute the standard coordinate vectors into the formula defin-
ing T :

T (e1) = T
�

1
0

�

=





3(1)− 0
0
1



=





3
0
1





T (e2) = T
�

0
1

�

=





3(0)− 1
1
0



=





−1
1
0



































=⇒ A=





3 −1
0 1
1 0



 .

Example (A transformation defined in steps). Let T : R3→ R3 be the linear trans-
formation that reflects over the x y-plane and then projects onto the yz-plane.
What is the standard matrix for T?

Solution. This transformation is described geometrically, in two steps. To find
the columns of A, we need to follow the standard coordinate vectors through each
of these steps.

x y

yz

e1

reflect x y
−−−−−→

x y

yz
project yz
−−−−−→

x y

yz

Since e1 lies on the x y-plane, reflecting over the x y-plane does not move e1.
Since e1 is perpendicular to the yz-plane, projecting e1 onto the yz-plane sends it
to zero. Therefore,

T (e1) =





0
0
0



 .

x y

yz

e2

reflect x y
−−−−−→

x y

yz
project yz
−−−−−→

x y

yz
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Since e2 lies on the x y-plane, reflecting over the x y-plane does not move e2.
Since e2 lies on the yz-plane, projecting onto the yz-plane does not move e2 either.
Therefore,

T (e2) = e2 =





0
1
0



 .

x y

yz
e3 reflect x y

−−−−−→
x y

yz
project yz
−−−−−→

x y

yz

Since e3 is perpendicular to the x y-plane, reflecting over the x y-plane takes e3

to its negative. Since −e3 lies on the yz-plane, projecting onto the yz-plane does
not move it. Therefore,

T (e3) = −e3 =





0
0
−1



 .

Now we have computed all three columns of A:

T (e1) =





0
0
0





T (e2) =





0
1
0





T (e1) =





0
0
−1































































=⇒ A=





0 0 0
0 1 0
0 0 −1



 .

Use this link to view the online demo

Illustration of a transformation defined in steps. Click and drag the vector on the left.

Recall from this definition in Section 4.1 that the identity transformation is the
transformation IdRn : Rn→ Rn defined by IdRn(x) = x for every vector x .

https://ulrikbuchholtz.dk/ila/demos/steps.html
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Example (The standard matrix of the identity transformation). Verify that the
identity transformation IdRn : Rn→ Rn is linear, and compute its standard matrix.

Solution. We verify the two defining properties of linear transformations. Let
u, v be vectors in Rn. Then

IdRn(u+ v) = u+ v = IdRn(u) + IdRn(v).

If c is a scalar, then
IdRn(cu) = cu= c IdRn(u).

Since IdRn satisfies the two defining properties, it is a linear transformation.
Now that we know that IdRn is linear, it makes sense to compute its standard

matrix. For each standard coordinate vector ei, we have IdRn(ei) = ei. In other
words, the columns of the standard matrix of IdRn are the standard coordinate
vectors, so the standard matrix is the identity matrix

In =













1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1













.

We computed in this example that the matrix of the identity transform is the
identity matrix: for every x in Rn,

x = IdRn(x) = In x .

Therefore, In x = x for all vectors x: the product of the identity matrix and a vector
is the same vector.

4.4 Matrix Multiplication

Objectives

1. Understand compositions of transformations.

2. Understand the relationship between matrix products and compositions of
matrix transformations.

3. Become comfortable doing basic algebra involving matrices.

4. Recipe: matrix multiplication (two ways).

5. Picture: composition of transformations.

6. Vocabulary: composition.
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In this section, we study compositions of transformations. As we will see, com-
position is a way of chaining transformations together. The composition of matrix
transformations corresponds to a notion of multiplying two matrices together. We
also discuss addition and scalar multiplication of transformations and of matri-
ces.

4.4.1 Composition of linear transformations

Composition means the same thing in linear algebra as it does in Calculus. Here
is the definition.

Definition. Let T : Rn→ Rm and U : Rp→ Rn be transformations. Their composi-
tion is the transformation T ◦ U : Rp→ Rm defined by

(T ◦ U)(x) = T (U(x)).

Composing two transformations means chaining them together: T ◦ U is the
transformation that first applies U , then applies T (note the order of operations).
More precisely, to evaluate T ◦ U on an input vector x , first you evaluate U(x),
then you take this output vector of U and use it as an input vector of T : that is,
(T ◦ U)(x) = T (U(x)). Of course, this only makes sense when the outputs of U
are valid inputs of T , that is, when the range of U is contained in the domain of
T .

Rp

x

Rn

U(x)

Rm

T ◦ U(x)

U
T

T ◦ U

Here is a picture of the composition T ◦U as a “machine” that first runs U , then
takes its output and feeds it into T ; there is a similar picture in this subsection in
Section 4.1.

T ◦ U

U TRp
x Rm

T ◦ U(x)
U(x)

Rn
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Domain and codomain of a composition.

• In order for T ◦ U to be defined, the codomain of U must equal the
domain of T .

• The domain of T ◦ U is the domain of U .

• The codomain of T ◦ U is the codomain of T .

Example (Functions of one variable). Define f : R→ R by f (x) = x2 and g : R→
R by g(x) = x3. The composition f ◦ g : R→ R is the transformation defined by
the rule

f ◦ g(x) = f (g(x)) = f (x3) = (x3)2 = x6.

For instance, f ◦ g(−2) = f (−8) = 64.

Interactive: A composition of matrix transformations. Define T : R3→ R2 and
U : R2→ R3 by

T (x) =
�

1 1 0
0 1 1

�

x and U(x) =





1 0
0 1
1 0



 x .

Their composition is a transformation T ◦U : R2→ R2; it turns out to be the matrix
transformation associated to the matrix

�

1 1
1 1

�

.

Use this link to view the online demo

A composition of two matrix transformations, i.e., a transformation performed in
two steps. On the left is the domain of U/the domain of T ◦ U; in the middle is the
codomain of U/the domain of T , and on the right is the codomain of T/the codomain
of T ◦ U. The vector x is the input of U and of T ◦ U; the vector in the middle is the
output of U/the input of T , and the vector on the right is the output of T/of T ◦ U.
Click and drag x.

Interactive: A transformation defined in steps. Let S : R3 → R3 be the linear
transformation that first reflects over the x y-plane and then projects onto the yz-
plane, as in this example in Section 4.3. The transformation S is the composition
T ◦ U , where U : R3 → R3 is the transformation that reflects over the x y-plane,
and T : R3→ R3 is the transformation that projects onto the yz-plane.

https://ulrikbuchholtz.dk/ila/demos/compose3d.html?mat2=1,1,0:0,1,1&mat1=1,0:0,1:1,0&rangeT=off&rangeU=off&rangeTU=off&range=5&closed=true
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Use this link to view the online demo

Illustration of a transformation defined in steps. On the left is the domain of U/the
domain of S; in the middle is the codomain of U/the domain of T , and on the right
is the codomain of T/the codomain of S. The vector u is the input of U and of S; the
vector in the middle is the output of U/the input of T , and the vector on the right is
the output of T/of S. Click and drag u.

Interactive: A transformation defined in steps. Let S : R3 → R3 be the linear
transformation that first projects onto the x y-plane, and then projects onto the
xz-plane. The transformation S is the composition T ◦ U , where U : R3 → R3 is
the transformation that projects onto the x y-plane, and T : R3 → R3 is the trans-
formation that projects onto the xz-plane.

Use this link to view the online demo

Illustration of a transformation defined in steps. Note that projecting onto the x y-
plane, followed by projecting onto the xz-plane, is the projection onto the x-axis.

Recall from this definition in Section 4.1 that the identity transformation is the
transformation IdRn : Rn→ Rn defined by IdRn(x) = x for every vector x .

Properties of composition. Let S, T, U be transformations and let c be a scalar.
Suppose that T : Rn → Rm, and that in each of the following identities, the do-
mains and the codomains are compatible when necessary for the composition to
be defined. The following properties are easily verified:

T ◦ IdRn = T IdRm ◦T = T
c(T ◦ U) = (cT ) ◦ U c(T ◦ U) = T ◦ (cU) if T is linear

S ◦ (T + U) = S ◦ T + S ◦ U (S + T ) ◦ U = S ◦ U + T ◦ U
if S is linear S ◦ (T ◦ U) = (S ◦ T ) ◦ U

The final property is called associativity. Unwrapping both sides, it says:

S ◦ (T ◦ U)(x) = S(T ◦ U(x)) = S(T (U(x))) = S ◦ T (U(x)) = (S ◦ T ) ◦ U(x).

In other words, both S ◦ (T ◦U) and (S ◦ T ) ◦U are the transformation defined by
first applying U , then T , then S.

Composition of transformations is not commutative in general. That is, in
general, T ◦ U ̸= U ◦ T , even when both compositions are defined.

Example (Functions of one variable). Define f : R→ R by f (x) = x2 and g : R→
R by g(x) = ex . The composition f ◦ g : R→ R is the transformation defined by
the rule

f ◦ g(x) = f (g(x)) = f (ex) = (ex)2 = e2x .

https://ulrikbuchholtz.dk/ila/demos/steps.html?out=S
https://ulrikbuchholtz.dk/ila/demos/compose3d.html?mat1=1,0,0:0,1,0:0,0,0&mat2=1,0,0:0,0,0:0,0,1&rangeT=off&rangeU=off&rangeTU=off&range=5&closed=true
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The composition g ◦ f : R→ R is the transformation defined by the rule

g ◦ f (x) = g( f (x)) = g(x2) = ex2
.

Note that ex2 ̸= e2x in general; for instance, if x = 1 then ex2
= e and e2x = e2.

Thus f ◦ g is not equal to g ◦ f , and we can already see with functions of one
variable that composition of functions is not commutative.

Example (Non-commutative composition of transformations). Define matrix trans-
formations T, U : R2→ R2 by

T (x) =
�

1 1
0 1

�

x and U(x) =
�

1 0
1 1

�

x .

Geometrically, T is a shear in the x-direction, and U is a shear in the Y -direction.
We evaluate

T ◦ U
�

1
0

�

= T
�

1
1

�

=
�

2
1

�

and

U ◦ T
�

1
0

�

= U
�

1
0

�

=
�

1
1

�

.

Since T ◦ U and U ◦ T have different outputs for the input vector
�1

0

�

, they are
different transformations. (See this example.)

Use this link to view the online demo

Illustration of the composition T ◦ U.

Use this link to view the online demo

Illustration of the composition U ◦ T.

4.4.2 Matrix multiplication

In this subsection, we introduce a seemingly unrelated operation on matrices,
namely, matrix multiplication. As we will see in the next subsection, matrix multi-
plication exactly corresponds to the composition of the corresponding linear trans-
formations. First we need some terminology.

Notation. Let A be an m× n matrix. We will generally write ai j for the entry in
the ith row and the jth column. It is called the i, j entry of the matrix.

https://ulrikbuchholtz.dk/ila/demos/compose2d.html?mat1=1,0,1,1&mat2=1,1,0,1&closed&vec=1,0&show1=on
https://ulrikbuchholtz.dk/ila/demos/compose2d.html?mat2=1,0,1,1&mat1=1,1,0,1&closed&vec=1,0&names=U,T&show1=on
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a11 · · · a1 j · · · a1n
...

...
...

ai1 · · · ai j · · · ain
...

...
...

am1 · · · amj · · · amn





















jth column

it
h

ro
w

Definition (Matrix multiplication). Let A be an m×n matrix and let B be an n× p
matrix. Denote the columns of B by v1, v2, . . . , vp:

B =





| | |
v1 v2 · · · vp

| | |



 .

The product AB is the m× p matrix with columns Av1, Av2, . . . , Avp:

AB =





| | |
Av1 Av2 · · · Avp

| | |



 .

In other words, matrix multiplication is defined column-by-column, or “dis-
tributes over the columns of B.”

Example.

�

1 1 0
0 1 1

�





1 0
0 1
1 0



=





�

1 1 0
0 1 1

�





1
0
1





�

1 1 0
0 1 1

�





0
1
0









=
��

1
1

� �

1
1

��

=
�

1 1
1 1

�

In order for the vectors Av1, Av2, . . . , Avp to be defined, the numbers of rows of
B has to equal the number of columns of A.

The sizes of the matrices in the matrix product.

• In order for AB to be defined, the number of rows of B has to equal the
number of columns of A.

• The product of an m× n matrix and an n× p matrix is an m× p matrix.

If B has only one column, then AB also has one column. A matrix with one
column is the same as a vector, so the definition of the matrix product generalizes
the definition of the matrix-vector product from this definition in Section 2.4.

If A is a square matrix, then we can multiply it by itself; we define its powers
to be

A2 = AA A3 = AAA etc.
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The row-column rule for matrix multiplication Recall from this definition in
Section 2.4 that the product of a row vector and a column vector is the scalar

�

a1 a2 · · · an

�









x1

x2
...

xn









= a1 x1 + a2 x2 + · · ·+ an xn.

The following procedure for finding the matrix product is much better adapted to
computations by hand; the previous definition is more suitable for proving theo-
rems, such as this theorem below.

Recipe: The row-column rule for matrix multiplication. Let A be an m× n
matrix, let B be an n× p matrix, and let C = AB. Then the i j entry of C is the
ith row of A times the jth column of B:

ci j = ai1 b1 j + ai2 b2 j + · · ·+ ain bn j.

Here is a diagram:

a11 · · · a1k · · · a1n...
...

...
ai1 · · · aik · · · ain...

...
...

am1 · · · amk · · · amn



















it
h

ro
w

b11 · · · b1 j · · · b1p
...

...
...

bk1 · · · bk j · · · bkp
...

...
...

bn1 · · · bn j · · · bnp

























jth column

=

c11 · · · c1 j · · · c1p
...

...
...

ci1 · · · ci j · · · cip
...

...
...

cm1 · · · cmj · · · cmp





















i j entry

Proof. The row-column rule for matrix-vector multiplication in Section 2.4 says
that if A has rows r1, r2, . . . , rm and x is a vector, then

Ax =









— r1 —
— r2 —

...
— rm —









x =









r1 x
r2 x

...
rm x









.

The definition of matrix multiplication is

A





| | |
c1 c2 · · · cp

| | |



=





| | |
Ac1 Ac2 · · · Acp

| | |



 .

It follows that








— r1 —
— r2 —

...
— rm —













| | |
c1 c2 · · · cp

| | |



=









r1c1 r1c2 · · · r1cp

r2c1 r2c2 · · · r2cp
...

...
...

rmc1 rmc2 · · · rmcp









.
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Example. The row-column rule allows us to compute the product matrix one entry
at a time:

�

1 2 3
4 5 6

�





1 −3
2 −2
3 −1



=

�

1 · 1+ 2 · 2+ 3 · 3
�

=

�

14
�

�

1 2 3
4 5 6

�





1 −3
2 −2
3 −1



=

�

4 · 1+ 5 · 2+ 6 · 3

�

=

�

14

32

�

You should try to fill in the other two boxes!

Although matrix multiplication satisfies many of the properties one would ex-
pect (see the end of the section), one must be careful when doing matrix arith-
metic, as there are several properties that are not satisfied in general.

Matrix multiplication caveats.

• Matrix multiplication is not commutative: AB is not usually equal to BA,
even when both products are defined and have the same size. See this
example.

• Matrix multiplication does not satisfy the cancellation law: AB = AC
does not imply B = C , even when A ̸= 0. For example,

�

1 0
0 0

��

1 2
3 4

�

=
�

1 2
0 0

�

=
�

1 0
0 0

��

1 2
5 6

�

.

• It is possible for AB = 0, even when A ̸= 0 and B ̸= 0. For example,

�

1 0
1 0

��

0 0
1 1

�

=
�

0 0
0 0

�

.

While matrix multiplication is not commutative in general there are examples
of matrices A and B with AB = BA. For example, this always works when A is the
zero matrix, or when A= B. The reader is encouraged to find other examples.

Example (Non-commutative multiplication of matrices). Consider the matrices

A=
�

1 1
0 1

�

and B =
�

1 0
1 1

�

,

as in this example. The matrix AB is

�

1 1
0 1

��

1 0
1 1

�

=
�

2 1
1 1

�

,
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whereas the matrix BA is
�

1 0
1 1

��

1 1
0 1

�

=
�

1 1
1 2

�

.

In particular, we have
AB ̸= BA.

And so matrix multiplication is not always commutative. It is not a coincidence
that this example agrees with the previous example; we are about to see that
multiplication of matrices corresponds to composition of transformations.

Order of Operations. Let T : Rn→ Rm and U : Rp→ Rn be linear transformations,
and let A and B be their standard matrices, respectively. Recall that T ◦U(x) is the
vector obtained by first applying U to x , and then T .

On the matrix side, the standard matrix of T ◦U is the product AB, so T ◦U(x) =
(AB)x . By associativity of matrix multiplication, we have (AB)x = A(Bx), so the
product (AB)x can be computed by first multiplying x by B, then multipyling the
product by A.

Therefore, matrix multiplication happens in the same order as composition of
transformations. In other words, both matrices and transformations are written in
the order opposite from the order in which they act. But matrix multiplication and
composition of transformations are written in the same order as each other: the
matrix for T ◦ U is AB.

4.4.3 Composition and Matrix Multiplication

The point of this subsection is to show that matrix multiplication corresponds to
composition of transformations, that is, the standard matrix for T ◦U is the product
of the standard matrices for T and for U . It should be hard to believe that our
complicated formula for matrix multiplication actually means something intuitive
such as “chaining two transformations together”!

Theorem. Let T : Rn → Rm and U : Rp → Rn be linear transformations, and let A
and B be their standard matrices, respectively, so A is an m× n matrix and B is an
n × p matrix. Then T ◦ U : Rp → Rm is a linear transformation, and its standard
matrix is the product AB.

Proof. First we verify that T ◦ U is linear. Let u, v be vectors in Rp. Then

T ◦ U(u+ v) = T (U(u+ v)) = T (U(u) + U(v))
= T (U(u)) + T (U(v)) = T ◦ U(u) + T ◦ U(v).

If c is a scalar, then

T ◦ U(cv) = T (U(cv)) = T (cU(v)) = cT (U(v)) = cT ◦ U(v).

Since T ◦U satisfies the two defining properties in Section 4.3, it is a linear trans-
formation.
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Now that we know that T ◦U is linear, it makes sense to compute its standard
matrix. Let C be the standard matrix of T ◦ U , so T (x) = Ax , U(x) = Bx , and
T ◦ U(x) = C x . By this theorem in Section 4.3, the first column of C is Ce1, and
the first column of B is Be1. We have

T ◦ U(e1) = T (U(e1)) = T (Be1) = A(Be1).

By definition, the first column of the product AB is the product of A with the first
column of B, which is Be1, so

Ce1 = T ◦ U(e1) = A(Be1) = (AB)e1.

It follows that C has the same first column as AB. The same argument as applied
to the ith standard coordinate vector ei shows that C and AB have the same ith
column; since they have the same columns, they are the same matrix.

The theorem justifies our choice of definition of the matrix product. This is the
one and only reason that matrix products are defined in this way. To rephrase:

Products and compositions. The matrix of the composition of two linear
transformations is the product of the matrices of the transformations.

Example (Composition of rotations). In this example in Section 4.3, we showed
that the standard matrix for the counterclockwise rotation of the plane by an angle
of θ is

A=
�

cosθ − sinθ
sinθ cosθ

�

.

Let T : R2→ R2 be counterclockwise rotation by 45◦, and let U : R2→ R2 be coun-
terclockwise rotation by 90◦. The matrices A and B for T and U are, respectively,

A=
�

cos(45◦) − sin(45◦)
sin(45◦) cos(45◦)

�

=
1
p

2

�

1 −1
1 1

�

B =
�

cos(90◦) − sin(90◦)
sin(90◦) cos(90◦)

�

=
�

0 −1
1 0

�

.

Here we used the trigonometric identities

cos(45◦) =
1
p

2
sin(45◦) =

1
p

2
cos(90◦) = 0 sin(90◦) = 1.

The standard matrix of the composition T ◦ U is

AB =
1
p

2

�

1 −1
1 1

��

0 −1
1 0

�

=
1
p

2

�

−1 −1
1 −1

�

.
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This is consistent with the fact that T◦U is counterclockwise rotation by 90◦+45◦ =
135◦: we have

�

cos(135◦) − sin(135◦)
sin(135◦) cos(135◦)

�

=
1
p

2

�

−1 −1
1 −1

�

because cos(135◦) = −1/
p

2 and sin(135◦) = 1/
p

2.

Challenge. Derive the trigonometric identities

sin(α± β) = sin(α) cos(β)± cos(α) sin(β)

and
cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β)

using the above theorem as applied to rotation transformations, as in the previous
example.

Interactive: A composition of matrix transformations. Define T : R3→ R2 and
U : R2→ R3 by

T (x) =
�

1 1 0
0 1 1

�

x and U(x) =





1 0
0 1
1 0



 x .

Their composition is a linear transformation T ◦ U : R2 → R2. By the theorem, its
standard matrix is

�

1 1 0
0 1 1

�





1 0
0 1
1 0



=
�

1 1
1 1

�

,

as we computed in the above example.

Use this link to view the online demo

The matrix of the composition T ◦ U is the product of the matrices for T and U.

Interactive: A transformation defined in steps. Let S : R3 → R3 be the linear
transformation that first reflects over the x y-plane and then projects onto the yz-
plane, as in this example in Section 4.3. The transformation S is the composition
T ◦ U , where U : R3 → R3 is the transformation that reflects over the x y-plane,
and T : R3→ R3 is the transformation that projects onto the yz-plane.

Let us compute the matrix B for U .

x y

yz

e1

reflect x y
−−−−−→

x y

yz

U(e1)

https://ulrikbuchholtz.dk/ila/demos/compose3d.html?mat2=1,1,0:0,1,1&mat1=1,0:0,1:1,0&rangeT=off&rangeU=off&rangeTU=off&range=5&closed=true
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Since e1 lies on the x y-plane, reflecting it over the x y-plane does not move it:

U(e1) =





1
0
0



 .

x y

yz

e2

reflect x y
−−−−−→

x y

yz

U(e2)

Since e2 lies on the x y-plane, reflecting over the x y-plane does not move it
either:

U(e2) = e2 =





0
1
0



 .

x y

yz
e3 reflect x y

−−−−−→
x y

yz

U(e3)

Since e3 is perpendicular to the x y-plane, reflecting over the x y-plane takes
e3 to its negative:

U(e3) = −e3 =





0
0
−1



 .

We have computed all of the columns of B:

B =





| | |
U(e1) U(e2) U(e3)
| | |



=





1 0 0
0 1 0
0 0 −1



 .
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By a similar method, we find

A=





0 0 0
0 1 0
0 0 1



 .

It follows that the matrix for S = T ◦ U is

AB =





0 0 0
0 1 0
0 0 1









1 0 0
0 1 0
0 0 −1





=









0 0 0
0 1 0
0 0 1









1
0
0









0 0 0
0 1 0
0 0 1









0
1
0









0 0 0
0 1 0
0 0 1









0
0
−1









=





0 0 0
0 1 0
0 0 −1



 ,

as we computed in this example in Section 4.3.

Use this link to view the online demo

Recall from this definition in Section 4.3 that the identity matrix is the n × n
matrix In whose columns are the standard coordinate vectors in Rn. The identity
matrix is the standard matrix of the identity transformation: that is, x = IdRn(x) =
In x for all vectors x in Rn. For any linear transformation T : Rn→ Rm we have

IRm ◦ T = T

and by the same token we have for any m× n matrix A we have

ImA= A.

Similarly, we have T ◦ IRn = T and AIn = A.

4.4.4 The algebra of transformations and matrices

In this subsection we describe two more operations that one can perform on trans-
formations: addition and scalar multiplication. We then translate these operations
into the language of matrices. This is analogous to what we did for the composition
of linear transformations, but much less subtle.

Definition.

https://ulrikbuchholtz.dk/ila/demos/compose3d.html?mat1=1,0,0:0,1,0:0,0,-1&mat2=0,0,0:0,1,0:0,0,1&rangeT=off&rangeU=off&rangeTU=off&range=5&closed=true
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• Let T, U : Rn→ Rm be two transformations. Their sum is the transformation
T + U : Rn→ Rm defined by

(T + U)(x) = T (x) + U(x).

Note that addition of transformations is only defined when both transforma-
tions have the same domain and codomain.

• Let T : Rn→ Rm be a transformation, and let c be a scalar. The scalar prod-
uct of c with T is the transformation cT : Rn→ Rm defined by

(cT )(x) = c · T (x).

To emphasize, the sum of two transformations T, U : Rn→ Rm is another trans-
formation called T + U; its value on an input vector x is the sum of the outputs
of T and U . Similarly, the product of T with a scalar c is another transformation
called cT ; its value on an input vector x is the vector c · T (x).

Example (Functions of one variable). Define f : R→ R by f (x) = x2 and g : R→
R by g(x) = x3. The sum f + g : R→ R is the transformation defined by the rule

( f + g)(x) = f (x) + g(x) = x2 + x3.

For instance, ( f + g)(−2) = (−2)2 + (−2)3 = −4.
Define exp: R→ R by exp(x) = ex . The product 2 exp: R→ R is the transfor-

mation defined by the rule

(2exp)(x) = 2 · exp(x) = 2ex .

For instance, (2exp)(1) = 2 · exp(1) = 2e.

Properties of addition and scalar multiplication for transformations. Let S, T, U : Rn→
Rm be transformations and let c, d be scalars. The following properties are easily
verified:

T + U = U + T S + (T + U) = (S + T ) + U
c(T + U) = cT + cU (c + d)T = cT + dT

c(dT ) = (cd)T T + 0= T

In one of the above properties, we used 0 to denote the transformation Rn →
Rm that is zero on every input vector: 0(x) = 0 for all x . This is called the zero
transformation.

We now give the analogous operations for matrices.

Definition.



4.4. MATRIX MULTIPLICATION 175

• The sum of two m×n matrices is the matrix obtained by summing the entries
of A and B individually:

�

a11 a12 a13

a21 a22 a23

�

+
�

b11 b12 b13

b21 b22 b23

�

=
�

a11 + b11 a12 + b12 a13 + b13

a21 + b21 a22 + b22 a23 + b23

�

In other words, the i, j entry of A+ B is the sum of the i, j entries of A and
B. Note that addition of matrices is only defined when both matrices have
the same size.

• The scalar product of a scalar c with a matrix A is obtained by scaling all
entries of A by c:

c
�

a11 a12 a13

a21 a22 a23

�

=
�

ca11 ca12 ca13

ca21 ca22 ca23

�

In other words, the i, j entry of cA is c times the i, j entry of A.

Fact. Let T, U : Rn → Rm be linear transformations with standard matrices A, B, re-
spectively, and let c be a scalar.

• The standard matrix for T + U is A+ B.

• The standard matrix for cT is cA.

In view of the above fact, the following properties are consequences of the
corresponding properties of transformations. They are easily verified directly from
the definitions as well.

Properties of addition and scalar multiplication for matrices. Let A, B, C be
m× n matrices and let c, d be scalars. Then:

A+ B = B + A C + (A+ B) = (C + A) + B
c(A+ B) = cA+ cB (c + d)A= cA+ dA

c(dA) = (cd)A A+ 0= A

In one of the above properties, we used 0 to denote the m× n matrix whose
entries are all zero. This is the standard matrix of the zero transformation, and is
called the zero matrix.

We can also combine addition and scalar multiplication of matrices with mul-
tiplication of matrices. Since matrix multiplication corresponds to composition
of transformations (theorem), the following properties are consequences of the
corresponding properties of transformations.

Properties of matrix multiplication. Let A, B, C be matrices and let c be a scalar.
Suppose that A is an m × n matrix, and that in each of the following identities,
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the sizes of B and C are compatible when necessary for the product to be defined.
Then:

C(A+ B) = CA+ CB (A+ B)C = AC + BC
c(AB) = (cA)B c(AB) = A(cB)

AIn = A ImA= A
(AB)C = A(BC)

Most of the above properties are easily verified directly from the definitions.
The associativity property (AB)C = A(BC), however, is not (try it!). It is much
easier to prove by relating matrix multiplication to composition of transformations,
and using the obvious fact that composition of transformations is associative.

4.5 Matrix Inverses

Objectives

1. Understand what it means for a square matrix to be invertible.

2. Learn about invertible transformations, and understand the relationship be-
tween invertible matrices and invertible transformations.

3. Recipes: compute the inverse matrix, solve a linear system by taking inverses.

4. Picture: the inverse of a transformation.

5. Vocabulary: inverse matrix, inverse transformation.

In Section 4.1 we learned to multiply matrices together. In this section, we
learn to “divide” by a matrix. This allows us to solve the matrix equation Ax = b
in an elegant way:

Ax = b ⇐⇒ x = A−1 b.

One has to take care when “dividing by matrices”, however, because not every
matrix has an inverse, and the order of matrix multiplication is important.

4.5.1 Invertible Matrices

The reciprocal or inverse of a nonzero number a is the number b which is charac-
terized by the property that ab = 1. For instance, the inverse of 7 is 1/7. We use
this formulation to define the inverse of a matrix.
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Definition. Let A be an n× n (square) matrix. We say that A is invertible if there
is an n× n matrix B such that

AB = In and BA= In.

In this case, the matrix B is called the inverse of A, and we write B = A−1.

We have to require AB = In and BA= In because in general matrix multiplica-
tion is not commutative. However, we will show in this corollary in Section 4.6
that if A and B are n× n matrices such that AB = In, then automatically BA= In.

Example. Verify that the matrices

A=
�

2 1
1 1

�

and B =
�

1 −1
−1 2

�

are inverses.

Solution. We will check that AB = I2 and that BA= I2.

AB =
�

2 1
1 1

��

1 −1
−1 2

�

=
�

1 0
0 1

�

BA=
�

1 −1
−1 2

��

2 1
1 1

�

=
�

1 0
0 1

�

Therefore, A is invertible, with inverse B.

Remark. There exist non-square matrices whose product is the identity. Indeed,
if

A=
�

1 0 0
0 1 0

�

and B =





1 0
0 1
0 0





then AB = I2. However, BA ̸= I3, so B does not deserve to be called the inverse of
A.

One can show using the ideas later in this section that if A is an n×m matrix
for n ̸= m, then there is no m × n matrix B such that AB = Im and BA = In.
For this reason, we restrict ourselves to square matrices when we discuss matrix
invertibility.

Facts about invertible matrices. Let A and B be invertible n× n matrices.

1. A−1 is invertible, and its inverse is (A−1)−1 = A.

2. AB is invertible, and its inverse is (AB)−1 = B−1A−1 (note the order).

Proof.

1. The equations AA−1 = In and A−1A = In at the same time exhibit A−1 as the
inverse of A and A as the inverse of A−1.
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2. We compute

(B−1A−1)AB = B−1(A−1A)B = B−1InB = B−1B = In.

Here we used the associativity of matrix multiplication and the fact that
InB = B. This shows that B−1A−1 is the inverse of AB.

Why is the inverse of AB not equal to A−1B−1? If it were, then we would have

In = (AB)(A−1B−1) = ABA−1B−1.

But there is no reason for ABA−1B−1 to equal the identity matrix: one cannot switch
the order of A−1 and B, so there is nothing to cancel in this expression. In fact, if
In = (AB)(A−1B−1), then we can multiply both sides on the right by BA to conclude
that AB = BA. In other words, (AB)−1 = A−1B−1 if and only if AB = BA.

More generally, the inverse of a product of several invertible matrices is the
product of the inverses, in the opposite order; the proof is the same. For instance,

(ABC)−1 = C−1B−1A−1.

4.5.2 Computing the Inverse Matrix

So far we have defined the inverse matrix without giving any strategy for comput-
ing it. We do so now, beginning with the special case of 2× 2 matrices. Then we
will give a recipe for the n× n case.

Definition. The determinant of a 2× 2 matrix is the number

det
�

a b
c d

�

= ad − bc.

Proposition. Let A=
�

a b
c d

�

.

1. If det(A) ̸= 0, then A is invertible, and

A−1 =
1

det(A)

�

d −b
−c a

�

.

2. If det(A) = 0, then A is not invertible.

Proof.
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1. Suppose that det(A) ̸= 0. Define B =
1

det(A)

�

d −b
−c a

�

. Then

AB =
�

a b
c d

�

1
det(A)

�

d −b
−c a

�

=
1

ad − bc

�

ad − bc 0
0 ad − bc

�

= I2.

The reader can check that BA= I2, so A is invertible and B = A−1.

2. Suppose that det(A) = ad − bc = 0. Let T : R2→ R2 be the matrix transfor-
mation T (x) = Ax . Then

T
�

−b
a

�

=
�

a b
c d

��

−b
a

�

=
�

−ab+ ab
−bc + ad

�

=
�

0
det(A)

�

= 0

T
�

d
−c

�

=
�

a b
c d

��

d
−c

�

=
�

ad − bc
cd − cd

�

=
�

det(A)
0

�

= 0.

If A is the zero matrix, then it is obviously not invertible. Otherwise, one of
v =

�−b
a

�

and v =
� d
−c

�

will be a nonzero vector in the null space of A. Suppose
that there were a matrix B such that BA= I2. Then

v = I2v = BAv = B0= 0,

which is impossible as v ̸= 0. Therefore, A is not invertible.

There is an analogous formula for the inverse of an n× n matrix, but it is not
as simple, and it is computationally intensive. The interested reader can find it in
this subsection in Section 5.2.

Example. Let

A=
�

1 2
3 4

�

.

Then det(A) = 1 ·4−2 ·3= −2. By the proposition, the matrix A is invertible with
inverse

�

1 2
3 4

�−1

=
1

det(A)

�

4 −2
−3 1

�

= −
1
2

�

4 −2
−3 1

�

.

We check:
�

1 2
3 4

�

· −
1
2

�

4 −2
−3 1

�

= −
1
2

�

−2 0
0 −2

�

= I2.

The following theorem gives a procedure for computing A−1 in general.

Theorem. Let A be an n × n matrix, and let (A | In ) be the matrix obtained by
augmenting A by the identity matrix. If the reduced row echelon form of (A | In ) has
the form ( In | B ), then A is invertible and B = A−1. Otherwise, A is not invertible.
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Proof. First suppose that the reduced row echelon form of (A | In ) does not have
the form ( In | B ). This means that fewer than n pivots are contained in the first n
columns (the non-augmented part), so A has fewer than n pivots. It follows that
Nul(A) ̸= {0} (the equation Ax = 0 has a free variable), so there exists a nonzero
vector v in Nul(A). Suppose that there were a matrix B such that BA= In. Then

v = Inv = BAv = B0= 0,

which is impossible as v ̸= 0. Therefore, A is not invertible.
Now suppose that the reduced row echelon form of (A | In ) has the form

( In | B ). In this case, all pivots are contained in the non-augmented part of the
matrix, so the augmented part plays no role in the row reduction: the entries of
the augmented part do not influence the choice of row operations used. Hence,
row reducing (A | In ) is equivalent to solving the n systems of linear equations
Ax1 = e1, Ax2 = e2, . . . , Axn = en, where e1, e2, . . . , en are the standard coordinate
vectors:

Ax1 = e1 :





1 0 4 1 0 0
0 1 2 0 1 0
0 −3 −4 0 0 1





Ax2 = e2 :





1 0 4 1 0 0
0 1 2 0 1 0
0 −3 −4 0 0 1





Ax3 = e3 :





1 0 4 1 0 0
0 1 2 0 1 0
0 −3 −4 0 0 1



 .

The columns x1, x2, . . . , xn of the matrix B in the row reduced form are the solu-
tions to these equations:

A





1
0
0



= e1 :





1 0 0 1 −6 −2
0 1 0 0 −2 −1
0 0 1 0 3/2 1/2





A





−6
−2

3/2



= e2 :





1 0 0 1 −6 −2
0 1 0 0 −2 −1
0 0 1 0 3/2 1/2





A





−2
−1

1/2



= e3 :





1 0 0 1 −6 −2
0 1 0 0 −2 −1
0 0 1 0 3/2 1/2



 .

By this fact in Section 4.3, the product Bei is just the ith column x i of B, so

ei = Ax i = ABei

for all i. By the same fact, the ith column of AB is ei, which means that AB is the
identity matrix. Thus B is the inverse of A.
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Example (An invertible matrix). Find the inverse of the matrix

A=





1 0 4
0 1 2
0 −3 −4



 .

Solution. We augment by the identity and row reduce:





1 0 4 1 0 0
0 1 2 0 1 0
0 −3 −4 0 0 1





R3=R3+3R2−−−−−−→





1 0 4 1 0 0
0 1 2 0 1 0
0 0 2 0 3 1





R1 = R1 − 2R3
R2 = R2 − R3−−−−−→





1 0 0 1 −6 −2
0 1 0 0 −2 −1
0 0 2 0 3 1





R3=R3÷2
−−−−−→





1 0 0 1 −6 −2
0 1 0 0 −2 −1
0 0 1 0 3/2 1/2



.

By the theorem, the inverse matrix is




1 0 4
0 1 2
0 −3 −4





−1

=





1 −6 −2
0 −2 −1
0 3/2 1/2



 .

We check:




1 0 4
0 1 2
0 −3 −4









1 −6 −2
0 −2 −1
0 3/2 1/2



=





1 0 0
0 1 0
0 0 1



 .

Example (A non-invertible matrix). Is the following matrix invertible?

A=





1 0 4
0 1 2
0 −3 −6



 .

Solution. We augment by the identity and row reduce:





1 0 4 1 0 0
0 1 2 0 1 0
0 −3 −6 0 0 1





R3=R3+3R2−−−−−−→





1 0 4 1 0 0
0 1 2 0 1 0
0 0 0 0 3 1



.

At this point we can stop, because it is clear that the reduced row echelon form
will not have I3 in the non-augmented part: it will have a row of zeros. By the
theorem, the matrix is not invertible.
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4.5.3 Solving Linear Systems using Inverses

In this subsection, we learn to solve Ax = b by “dividing by A.”

Theorem. Let A be an invertible n× n matrix, and let b be a vector in Rn. Then the
matrix equation Ax = b has exactly one solution:

x = A−1 b.

Proof. We calculate:

Ax = b =⇒ A−1(Ax) = A−1 b

=⇒ (A−1A)x = A−1 b

=⇒ In x = A−1 b

=⇒ x = A−1 b.

Here we used associativity of matrix multiplication, and the fact that In x = x for
any vector b.

Example (Solving a 2× 2 system using inverses). Solve the matrix equation

�

1 3
−1 2

�

x =
�

1
1

�

.

Solution. By the theorem, the only solution of our linear system is

x =
�

1 3
−1 2

�−1�
1
1

�

=
1
5

�

2 −3
1 1

��

1
1

�

=
1
5

�

−1
2

�

.

Here we used

det
�

1 3
−1 2

�

= 1 · 2− (−1) · 3= 5.

Example (Solving a 3× 3 system using inverses). Solve the system of equations

(2x1 + 3x2 + 2x3 = 1
x1 + 3x3 = 1

2x1 + 2x2 + 3x3 = 1.

Solution. First we write our system as a matrix equation Ax = b, where

A=





2 3 2
1 0 3
2 2 3



 and b =





1
1
1



 .

Next we find the inverse of A by augmenting and row reducing:
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



2 3 2 1 0 0
1 0 3 0 1 0
2 2 3 0 0 1





R1←→R2−−−−→





1 0 3 0 1 0
2 3 2 1 0 0
2 2 3 0 0 1





R2 = R2 − 2R1
R3 = R3 − 2R1−−−−−→





1 0 3 0 1 0
0 3 −4 1 −2 0
0 2 −3 0 −2 1





R2=R2−R3−−−−−→





1 0 3 0 1 0
0 1 −1 1 0 −1
0 2 −3 0 −2 1





R3=R3−2R2−−−−−−→





1 0 3 0 1 0
0 1 −1 1 0 −1
0 0 −1 −2 −2 3





R3=−R3−−−−→





1 0 3 0 1 0
0 1 −1 1 0 −1
0 0 1 2 2 −3





R1 = R1 − 3R3
R2 = R2 + R3−−−−−→





1 0 0 −6 −5 9
0 1 0 3 2 −4
0 0 1 2 2 −3



.

By the theorem, the only solution of our linear system is





x1

x2

x3



=





2 3 2
1 0 3
2 2 3





−1



1
1
1



=





−6 −5 9
3 2 −4
2 2 −3









1
1
1



=





−2
1
1



 .

The advantage of solving a linear system using inverses is that it becomes much
faster to solve the matrix equation Ax = b for other, or even unknown, values of
b. For instance, in the above example, the solution of the system of equations

(2x1 + 3x2 + 2x3 = b1

x1 + 3x3 = b2

2x1 + 2x2 + 3x3 = b3,

where b1, b2, b3 are unknowns, is





x1

x2

x3



=





2 3 2
1 0 3
2 2 3





−1



b1

b2

b3



=





−6 −5 9
3 2 −4
2 2 −3









b1

b2

b3



=





−6b1 − 5b2 + 9b3

3b1 + 2b2 − 4b3

2b1 + 2b2 − 3b3



 .
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4.5.4 Invertible linear transformations

As with matrix multiplication, it is helpful to understand matrix inversion as an
operation on linear transformations. Recall that the identity transformation on Rn

is denoted IdRn .

Definition. A transformation T : Rn → Rn is invertible if there exists a transfor-
mation U : Rn → Rn such that T ◦ U = IdRn and U ◦ T = IdRn . In this case, the
transformation U is called the inverse of T , and we write U = T−1.

The inverse U of T “undoes” whatever T did. We have

T ◦ U(x) = x and U ◦ T (x) = x

for all vectors x . This means that if you apply T to x , then you apply U , you get
the vector x back, and likewise in the other order.

Example (Functions of one variable). Define f : R→ R by f (x) = 2x . This is an
invertible transformation, with inverse g(x) = x/2. Indeed,

f ◦ g(x) = f (g(x)) = f
�

x
2

�

= 2
�

x
2

�

= x

and
g ◦ f (x) = g( f (x)) = g(2x) =

2x
2
= x .

In other words, dividing by 2 undoes the transformation that multiplies by 2.
Define f : R → R by f (x) = x3. This is an invertible transformation, with

inverse g(x) = 3px . Indeed,

f ◦ g(x) = f (g(x)) = f ( 3px) =
�

3px
�3
= x

and
g ◦ f (x) = g( f (x)) = g(x3) =

3
p

x3 = x .

In other words, taking the cube root undoes the transformation that takes a num-
ber to its cube.

Define f : R→ R by f (x) = x2. This is not an invertible function. Indeed, we
have f (2) = 2= f (−2), so there is no way to undo f : the inverse transformation
would not know if it should send 2 to 2 or −2. More formally, if g : R→ R satisfies
g( f (x)) = x , then

2= g( f (2)) = g(2) and − 2= g( f (−2)) = g(2),

which is impossible: g(2) is a number, so it cannot be equal to 2 and −2 at the
same time.

Define f : R → R by f (x) = ex . This is not an invertible function. Indeed, if
there were a function g : R→ R such that f ◦ g = IdR, then we would have

−1= f ◦ g(−1) = f (g(−1)) = eg(−1).

But ex is a positive number for every x , so this is impossible.
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Example (Dilation). Let T : R2→ R2 be dilation by a factor of 3/2: that is, T (x) =
3/2x . Is T invertible? If so, what is T−1?

Solution. Let U : R2 → R2 be dilation by a factor of 2/3: that is, U(x) = 2/3x .
Then

T ◦ U(x) = T
�

2
3

x
�

=
3
2
·

2
3

x = x

and

U ◦ T (x) = U
�

3
2

x
�

=
2
3
·

3
2

x = x .

Hence T ◦ U = IdR2 and U ◦ T = IdR2 , so T is invertible, with inverse U . In other
words, shrinking by a factor of 2/3 undoes stretching by a factor of 3/2.

U T

Use this link to view the online demo

Shrinking by a factor of 2/3 followed by scaling by a factor of 3/2 is the identity
transformation.

Use this link to view the online demo

Scaling by a factor of 3/2 followed by shrinking by a factor of 2/3 is the identity
transformation.

Example (Rotation). Let T : R2 → R2 be counterclockwise rotation by 45◦. Is T
invertible? If so, what is T−1?

Solution. Let U : R2 → R2 be clockwise rotation by 45◦. Then T ◦ U first rotates
clockwise by 45◦, then counterclockwise by 45◦, so the composition rotates by zero
degrees: it is the identity transformation. Likewise, U◦T first rotates counterclock-
wise, then clockwise by the same amount, so it is the identity transformation. In
other words, clockwise rotation by 45◦ undoes counterclockwise rotation by 45◦.

https://ulrikbuchholtz.dk/ila/demos/compose2d.html?closed&mat1=2/3,0,0,2/3&mat2=1.5,0,0,1.5&show1
https://ulrikbuchholtz.dk/ila/demos/compose2d.html?closed&mat2=2/3,0,0,2/3&mat1=1.5,0,0,1.5&show1&names=U,T
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T U

Use this link to view the online demo

Counterclockwise rotation by 45◦ followed by clockwise rotation by 45◦ is the identity
transformation.

Use this link to view the online demo

Clockwise rotation by 45◦ followed by counterclockwise rotation by 45◦ is the identity
transformation.

Example (Reflection). Let T : R2 → R2 be the reflection over the y-axis. Is T
invertible? If so, what is T−1?

Solution. The transformation T is invertible; in fact, it is equal to its own in-
verse. Reflecting a vector x over the y-axis twice brings the vector back to where
it started, so T ◦ T = IdR2 .

T T

Use this link to view the online demo

The transformation T is equal to its own inverse: applying T twice takes a vector
back to where it started.

Non-Example (Projection). Let T : R3→ R3 be the projection onto the x y-plane,
introduced in this example in Section 4.1. Is T invertible?

Solution. The transformation T is not invertible. Every vector on the z-axis
projects onto the zero vector, so there is no way to undo what T did: the inverse

https://ulrikbuchholtz.dk/ila/demos/compose2d.html?closed&mat1=1/sqrt(2),-1/sqrt(2),1/sqrt(2),1/sqrt(2)&mat2=1/sqrt(2),1/sqrt(2),-1/sqrt(2),1/sqrt(2)&show1&names=U,T
https://ulrikbuchholtz.dk/ila/demos/compose2d.html?closed&mat2=1/sqrt(2),-1/sqrt(2),1/sqrt(2),1/sqrt(2)&mat1=1/sqrt(2),1/sqrt(2),-1/sqrt(2),1/sqrt(2)&show1
https://ulrikbuchholtz.dk/ila/demos/compose2d.html?closed=true&mat1=-1,0,0,1&mat2=-1,0,0,1&show1&names=T,T'
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transformation would not know which vector on the z-axis it should send the zero
vector to. More formally, suppose there were a transformation U : R3 → R3 such
that U ◦ T = IdR3 . Then

0= U ◦ T (0) = U(T (0)) = U(0)

and




0
0
1



= U ◦ T





0
0
1



= U



T





0
0
1







= U(0).

But U(0) is as single vector in R3, so it cannot be equal to 0 and to (0,0, 1) at the
same time.

Use this link to view the online demo

Projection onto the x y-plane is not an invertible transformation: all points on each
vertical line are sent to the same point by T , so there is no way to undo T.

Proposition.

1. A transformation T : Rn → Rn is invertible if and only if it is both one-to-one
and onto.

2. If T is already known to be invertible, then U : Rn → Rn is the inverse of T
provided that either T ◦U = IdRn or U ◦ T = IdRn: it is only necessary to verify
one.

Proof. To say that T is one-to-one and onto means that T (x) = b has exactly one
solution for every b in Rn.

Suppose that T is invertible. Then T (x) = b always has the unique solution
x = T−1(b): indeed, applying T−1 to both sides of T (x) = b gives

x = T−1(T (x)) = T−1(b),

and applying T to both sides of x = T−1(b) gives

T (x) = T (T−1(b)) = b.

Conversely, suppose that T is one-to-one and onto. Let b be a vector in Rn,
and let x = U(b) be the unique solution of T (x) = b. Then U defines a transfor-
mation from Rn to Rn. For any x in Rn, we have U(T (x)) = x , because x is the
unique solution of the equation T (x) = b for b = T (x). For any b in Rn, we have
T (U(b)) = b, because x = U(b) is the unique solution of T (x) = b. Therefore, U
is the inverse of T , and T is invertible.

Suppose now that T is an invertible transformation, and that U is another
transformation such that T ◦ U = IdRn . We must show that U = T−1, i.e., that

https://ulrikbuchholtz.dk/ila/demos/Axequalsb.html?mat=1,0,0:0,1,0:0,0,0&range2=5&closed=true&show=true
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U ◦ T = IdRn . We compose both sides of the equality T ◦ U = IdRn on the left by
T−1 and on the right by T to obtain

T−1 ◦ T ◦ U ◦ T = T−1 ◦ IdRn ◦T.

We have T−1 ◦ T = IdRn and IdRn ◦U = U , so the left side of the above equation
is U ◦ T . Likewise, IdRn ◦T = T and T−1 ◦ T = IdRn , so our equality simplifies to
U ◦ T = IdRn , as desired.

If instead we had assumed only that U ◦ T = IdRn , then the proof that T ◦ U =
IdRn proceeds similarly.

Remark. It makes sense in the above definition to define the inverse of a trans-
formation T : Rn → Rm, for m ̸= n, to be a transformation U : Rm → Rn such that
T ◦ U = IdRm and U ◦ T = IdRn . In fact, there exist invertible transformations
T : Rn→ Rm for any m and n, but they are not linear, or even continuous.

If T is a linear transformation, then it can only be invertible when m = n, i.e.,
when its domain is equal to its codomain. Indeed, if T : Rn → Rm is one-to-one,
then n≤ m by this note in Section 4.2, and if T is onto, then m≤ n by this note in
Section 4.2. Therefore, when discussing invertibility we restrict ourselves to the
case m= n.

Challenge. Find an invertible (non-linear) transformation T : R2→ R.

As you might expect, the matrix for the inverse of a linear transformation is
the inverse of the matrix for the transformation, as the following theorem asserts.

Theorem. Let T : Rn→ Rn be a linear transformation with standard matrix A. Then
T is invertible if and only if A is invertible, in which case T−1 is linear with standard
matrix A−1.

Proof. Suppose that T is invertible. Let U : Rn→ Rn be the inverse of T . We claim
that U is linear. We need to check the defining properties in Section 4.3. Let u, v
be vectors in Rn. Then

u+ v = T (U(u)) + T (U(v)) = T (U(u) + U(v))

by linearity of T . Applying U to both sides gives

U(u+ v) = U
�

T (U(u) + U(v))
�

= U(u) + U(v).

Let c be a scalar. Then
cu= cT (U(u)) = T (cU(u))

by linearity of T . Applying U to both sides gives

U(cu) = U
�

T (cU(u))
�

= cU(u).

Since U satisfies the defining properties in Section 4.3, it is a linear transformation.
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Now that we know that U is linear, we know that it has a standard matrix
B. By the compatibility of matrix multiplication and composition in Section 4.4,
the matrix for T ◦ U is AB. But T ◦ U is the identity transformation IdRn , and the
standard matrix for IdRn is In, so AB = In. One shows similarly that BA= In. Hence
A is invertible and B = A−1.

Conversely, suppose that A is invertible. Let B = A−1, and define U : Rn → Rn

by U(x) = Bx . By the compatibility of matrix multiplication and composition in
Section 4.4, the matrix for T ◦ U is AB = In, and the matrix for U ◦ T is BA = In.
Therefore,

T ◦ U(x) = ABx = In x = x and U ◦ T (x) = BAx = In x = x ,

which shows that T is invertible with inverse transformation U .

Example (Dilation). Let T : R2→ R2 be dilation by a factor of 3/2: that is, T (x) =
3/2x . Is T invertible? If so, what is T−1?

Solution. In this example in Section 4.1 we showed that the matrix for T is

A=
�

3/2 0
0 3/2

�

.

The determinant of A is 9/4 ̸= 0, so A is invertible with inverse

A−1 =
1

9/4

�

3/2 0
0 3/2

�

=
�

2/3 0
0 2/3

�

.

By the theorem, T is invertible, and its inverse is the matrix transformation for
A−1:

T−1(x) =
�

2/3 0
0 2/3

�

x .

We recognize this as a dilation by a factor of 2/3.

Example (Rotation). Let T : R2 → R2 be counterclockwise rotation by 45◦. Is T
invertible? If so, what is T−1?

Solution. In this example in Section 4.3, we showed that the standard matrix
for the counterclockwise rotation of the plane by an angle of θ is

�

cosθ − sinθ
sinθ cosθ

�

.

Therefore, the standard matrix A for T is

A=
1
p

2

�

1 −1
1 1

�

,

where we have used the trigonometric identities

cos(45◦) =
1
p

2
sin(45◦) =

1
p

2
.
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The determinant of A is

det(A) =
1
p

2
·

1
p

2
−

1
p

2

−1
p

2
=

1
2
+

1
2
= 1,

so the inverse is

A−1 =
1
p

2

�

1 1
−1 1

�

.

By the theorem, T is invertible, and its inverse is the matrix transformation for
A−1:

T−1(x) =
1
p

2

�

1 1
−1 1

�

x .

We recognize this as a clockwise rotation by 45◦, using the trigonometric identities

cos(−45◦) =
1
p

2
sin(−45◦) = −

1
p

2
.

Example (Reflection). Let T : R2 → R2 be the reflection over the y-axis. Is T
invertible? If so, what is T−1?

Solution. In this example in Section 4.1 we showed that the matrix for T is

A=
�

−1 0
0 1

�

.

This matrix has determinant −1, so it is invertible, with inverse

A−1 = −
�

1 0
0 −1

�

=
�

−1 0
0 1

�

= A.

By the theorem, T is invertible, and it is equal to its own inverse: T−1 = T . This
is another way of saying that a reflection “undoes” itself.

4.6 The Invertible Matrix Theorem

Objectives

1. Theorem: the invertible matrix theorem.

This section consists of a single important theorem containing many equivalent
conditions for a matrix to be invertible. This is one of the most important theorems
in this textbook. We will append two more criteria in Section 6.1.

Invertible Matrix Theorem. Let A be an n× n matrix, and let T : Rn → Rn be the
matrix transformation T (x) = Ax. The following statements are equivalent:



4.6. THE INVERTIBLE MATRIX THEOREM 191

1. A is invertible.

2. A has n pivots.

3. Nul(A) = {0}.

4. The columns of A are linearly independent.

5. The columns of A span Rn.

6. Ax = b has a unique solution for each b in Rn.

7. T is invertible.

8. T is one-to-one.

9. T is onto.

10. ker(T ) = {0}.

11. im(T ) = Rn.

Proof. (1 ⇐⇒ 2): The matrix A has n pivots if and only if its reduced row ech-
elon form is the identity matrix In. This happens exactly when the procedure in
Section 4.5 to compute the inverse succeeds.
(2 ⇐⇒ 3): The null space of a matrix is {0} if and only if the matrix has no

free variables, which means that every column is a pivot column, which means A
has n pivots. See this recipe in Section 3.3.
(2 ⇐⇒ 4, 2 ⇐⇒ 5): These follow from this recipe in Section 3.2 and this

theorem in Section 2.4, respectively, since A has n pivots if and only if has a pivot
in every row/column.
(4+5 ⇐⇒ 6): We know Ax = b has at least one solution for every b if and only

if the columns of A span Rn by this theorem in Section 4.2, and Ax = b has at most
one solution for every b if and only if the columns of A are linearly independent
by this theorem in Section 4.2. Hence Ax = b has exactly one solution for every b
if and only if its columns are linearly independent and span Rn.
(1 ⇐⇒ 7): This is the content of this theorem in Section 4.5.
(7 =⇒ 8+ 9): See this proposition in Section 4.5.
(8 ⇐⇒ 4, 9 ⇐⇒ 5): See this this theorem in Section 4.2 and this theorem

in Section 4.2.
(3 ⇐⇒ 10): This is by definition of the kernel.
(9 ⇐⇒ 11): This is by definition of the image.
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To reiterate, the invertible matrix theorem means:

There are two kinds of square matrices:

1. invertible matrices, and

2. non-invertible matrices.

For invertible matrices, all of the statements of the invertible matrix theorem
are true.
For non-invertible matrices, all of the statements of the invertible matrix the-
orem are false.

The reader should be comfortable translating any of the statements in the in-
vertible matrix theorem into a statement about the pivots of a matrix.

Other Conditions for Invertibility. The following conditions are also equivalent
to the invertibility of a square matrix A. They are all simple restatements of con-
ditions in the invertible matrix theorem.

1. The reduced row echelon form of A is the identity matrix In.

2. Ax = 0 has no solutions other than the trivial one.

3. nullity(A) = 0.

4. The columns of A form a basis for Rn.

5. Ax = b is consistent for all b in Rn.

6. Col(A) = Rn.

7. dimCol(A) = n.

8. rank(A) = n.

Now we can show that to check B = A−1, it’s enough to show AB = In or BA= In.

Corollary (A Left or Right Inverse Suffices). Let A be an n× n matrix, and suppose
that there exists an n×n matrix B such that AB = In or BA= In. Then A is invertible
and B = A−1.

Proof. Suppose that AB = In. We claim that T (x) = Ax is onto. Indeed, for any b
in Rn, we have

b = In b = (AB)b = A(Bb),

so T (Bb) = b, and hence b is in the range of T . Therefore, A is invertible by the
invertible matrix theorem. Since A is invertible, we have

A−1 = A−1In = A−1(AB) = (A−1A)B = InB = B,
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so B = A−1.
Now suppose that BA = In. We claim that T (x) = Ax is one-to-one. Indeed,

suppose that T (x) = T (y). Then Ax = Ay , so BAx = BAy . But BA = In, so
In x = In y , and hence x = y . Therefore, A is invertible by the invertible matrix
theorem. One shows that B = A−1 as above.

We conclude with some common situations in which the invertible matrix the-
orem is useful.

Example. Is this matrix invertible?

A=





1 2 −1
2 4 7
−2 −4 1





Solution. The second column is a multiple of the first. The columns are linearly
dependent, so A does not satisfy condition 4 of the invertible matrix theorem.
Therefore, A is not invertible.

Example. Let A be an n× n matrix and let T (x) = Ax . Suppose that the range of
T is Rn. Show that the columns of A are linearly independent.

Solution. The range of T is the column space of A, so A satisfies condition 5 of
the invertible matrix theorem. Therefore, A also satisfies condition 4, which says
that the columns of A are linearly independent.

Example. Let A be a 3× 3 matrix such that

A





1
7
0



= A





2
0
−1



 .

Show that the rank of A is at most 2.

Solution. If we set

b = A





1
7
0



= A





2
0
−1



 ,

then Ax = b has multiple solutions, so it does not satisfy condition 6 of the invert-
ible matrix theorem. Therefore, it does not satisfy condition 5, so the columns of
A do not span R3. Therefore, the column space has dimension strictly less than 3,
the rank is at most 2.

Example. Suppose that A is an n× n matrix such that Ax = b is inconsistent for
some vector b. Show that Ax = b has infinitely many solutions for some (other)
vector b.

Solution. By hypothesis, A does not satisfy condition 6 of the invertible matrix
theorem. Therefore, it does not satisfy condition 3, so Nul(A) is an infinite set. If
we take b = 0, then the equation Ax = b has infinitely many solutions.
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4.7 Invertible matrices and Coordinate Systems

Objectives

1. Learn to use invertible matrices to convert between coordinate systems.

2. Learn to represent linear transformations with respect to given bases.

3. Recipes: compute the (B,C)-matrix of a linear transformation.

4. Vocabulary: (B,C)-matrix.

In this section, we study matrix representations for linear transformations with
respect to bases for the domain and the codomain. We’ll also get another perspec-
tive on bases in terms of the linear transformations they represent, and we’ll see
how to convert between different coordinate systems using matrices and their in-
verses.

Bases and one-to-one linear transformations. If B is an m × n matrix with
columns v1, v2, . . . , vn, then B = (v1, . . . , vn) is a basis for the column span V = Col(B)
if and only if the linear transformation T : Rn→ Rm, T (x) = Bx is one-to-one.

Indeed, the columns of B span V by definition, and they’re linearly independent
if and only if T is one-to-one, using theorem in Section 4.2.

In particular, a list B = (v1, . . . , vn) of vectors in Rn forms a basis for all of Rn if
and only if the square n× n matrix B with columns v1, . . . , vn is invertible. These
columns are clearly the coordinate vectors of the vi with respect to the standard
basis E = (e1, . . . , en) for Rn. Conversely, the columns of the inverse matrix B−1 are
the B-coordinates of the standard basis vectors:

B−1 =





| | |
B[e1] B[e2] · · · B[en]
| | |



 .

This is because BB−1 = In, so B B[ei] = ei, which is the definition of B[ei] being the
B-coordinates of ei. Multiplying by B−1 and taking linear combinations we get:

If B is an invertible n× n square matrix, whose columns thus form a basis B
of Rn, the B-coordinates of any vector x ∈ Rn is given by

B[x] = B−1 x and hence B B[x] = x .

This says that (multiplication by) B changes from the B-coordinates to the usual
coordinates, and B−1 changes from the usual coordinates to the B-coordinates.
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Definition. Suppose we’re given bases B = (v1, . . . , vn) for Rn and C = (w1, . . . , wm)
for Rm. Let T : Rn→ Rm be a linear transformation. The (B,C)-matrix of T is the
m× n matrix

C[T]B =





| | |
C[T (v1)] C[T (v2)] · · · C[T (vn)]
| | |



 .

This generalizes the definition of the standard matrix of T : If we let B = En

and C = Em be the standard bases for Rn and Rm, then Em
[T]En

= [T], the standard
matrix of T .

By the discussion above, if E is the standard basis for Rn and B = (v1, . . . , vn)
is another basis for Rn, so the square n × n matrix B with columns v1, . . . , vn is
invertible, then

B = E[IdRn]B and B−1 = B[IdRn]E .

If B is an invertible n× n square matrix, whose columns thus form a basis B
of Rn, and C is an invertible m×m square matrix, whose columns thus form
a basis C of Rm, then the (B,C)-matrix of a linear transformation T : Rn→ Rm

is given by the matrix product

C[T]B = C−1[T]B,

where [T] is the standard matrix for T .

One way to read this formula is right-to-left: The multiplying by B converts
from /cB-coordinates to standard coordinates in Rn; multiplying by the standard
matrix [T] then results in the standard coordinates in Rm of the result of act-
ing with the transformation T , while finally multiplying by C−1 converts to the
C-coordinates. Altogether, the matrix product C−1[T]B takes B-coordinates of a
vector x ∈ Rn to the C-coordinates of the image T (x) ∈ Rm

Conversely, we can recover the standard matrix of T as

[T] = C C[T]B B−1;

this says that to do T in standard coordinates is the same as to first convert to
B-coordinates, then do T in the (B,C)-coordinates, and finally convert from C-
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coordinates back to standard coordinates.

Recipe: Computing T (x) in terms of the (B,C)-matrix. Suppose that A =
[T] = C DB−1 is the standard matrix for T : Rn→ Rm, where B is the invertible
matrix corresponding to the basis B for Rn, C is the invertible matrix corre-
sponding to the basis C for Rm, and D = C[T]B is the (B,C)-matrix for T . To
compute T (x) = Ax , for some x ∈ Rn, one can do the following:

1. Multiply x by B−1, which changes to the B-coordinates: B[x] = B−1 x .

2. Multiply this by D: D B[x] = DB−1 x .

3. Interpreting this vector as a C-coordinate vector, we multiply it by C to
change back to the usual coordinates for Rm: Ax = C DB−1 x = C DB[x].

To summarize: if A= C DB−1, then A and D do the same thing, only in different
coordinate systems for Rn and Rm.

Example. Consider the matrices

A=
�

0 1
0 1

�

B =
�

0 −1
1 0

�

C =
�

1 1
1 −1

�

D =
�

1 0
0 0

�

.

One can verify that A = C DB−1: try it yourself. Let v1 =
�0

1

�

and v2 =
�−1

0

�

, the
columns of B corresponding to the basis B = (v1, v2) of R2. Let w1 =

�1
1

�

and
w2 =

� 1
−1

�

, the columns of C corresponding to the basis C = (w1, w2), another
basis of R2.

The matrix D is diagonal with a one and a zero: it keeps the x-direction and
zeroes out the y-direction.

To compute Ax , first we multiply by B−1 to find the B-coordinates of x , then
we multiply by D, then we multiply by C . For instance, let x =

�1
2

�

.

1. We see from the B-coordinate grid below that x = 2v1 − v2. Therefore,
B−1 x = B[x] =

� 2
−1

�

.

2. Multiplying by D zeroes out the y-coordinate: D B[x] =
�2

0

�

.

3. Interpreting
�2

0

�

as a C-coordinate vector, we multiply by C to get

Ax = C
�

2
0

�

= 2w1 =
�

2
2

�

.

Of course, this vector lies at (2,0) on the C-coordinate grid.
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B-coordinates

B[x]

usual En-coordinates, n= 2

x

C-coordinates

D B[x]

usual Em-coordinates, m= 2

Ax = C DB−1 x

multiply by B−1

multiply by C

multiply by D multiply by A

To summarize:

• D retains the e1-direction and zeroes out the e2-direction.

• A maps v1-direction onto the w1-direction and maps the v2-direction to zero.

Facts about (B,C)-matrices. Let T : Rn→ Rm and U : Rp → Rn be linear transfor-
mations, and let B,C,D be bases for Rp,Rn,Rm, respectively. Then:

1. D[T (v)] = D[T]C C[v] for any v ∈ Rn.

2. D[T ◦ U]B = D[T]C C[U]B

3. If T is invertible (so n= m), then C[T−1]D = (D[T]C)−1.

Proof.

1. D[T (v)] = D−1(T (v)) = D−1[T]v = D−1[T]CC−1v = D[T]C C[v]

2. D[T ◦ U]B = D−1[T][U]B = D−1[T]CC−1[U] = D[T]C C[U]B

3. This follows directly from 2: C[T−1]D D[T]C = C[T−1 ◦ T]C = C[IdRn]C = In.
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Theorem. Suppose T : Rn → Rm is a linear map. Then we can pick bases, B for Rn

and C for Rm, relative to which the (B,C)-matrix for T is diagonal with rank(T ) ones
and zeroes everywhere else:

C[T]B =









1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 0









.

Proof. This is essentially just another application of the pivotal theorem in Sec-
tion 3.2. If A is the standard matrix for T , say,

A=





1 2 −1 4
2 4 −1 7
−1 −2 3 −6





RREF
−−→





1 2 0 3
0 0 1 −1
0 0 0 0



 ,

then we take the pivot columns of A (here, the first and third columns), as these
form a basis for the image, and extend to a basis for all of Rm, again using the
pivotal theorem. In the example, we get:

C =









1
2
−1



 ,





−1
−1

3



 ,





1
0
0









To get B, we pick the standard basis vectors corresponding to the pivot columns
of A and extend that a basis for all Rn by appending a basis for the kernel of T ,
which we find using the RREF of its standard matrix. Here we get:

B =













1
0
0
0






,







0
0
1
0






,







−3
0
1
1






,







−2
1
0
0













It’s easy to see that this works, and we can check this by forming the matrices
corresponding to B and C and computing:

C[T]B = C−1AB =





1 −1 1
2 −1 0
−1 3 0





−1



1 2 −1 4
2 4 −1 7
−1 −2 3 −6











1 0 −3 −2
0 0 0 1
0 1 1 0
0 0 1 0







=





1 0 0 0
0 1 0 0
0 0 0 0



 .

This is a very simple kind of diagonalisation theorem, which is made possible
by the fact that we can choose bases for the domain and the codomain indepen-
dently. In Chapter 6 we’ll see that the situation is much more subtle for linear
transformations T : Rn → Rn where the domain and the codomain coincide and
we want to use the same basis for both.



Chapter 5

Determinants

We begin by recalling the overall structure of this book:

1. Solve the matrix equation Ax = b.

2. Solve the matrix equation Ax = λx , where λ is a number.

3. Approximately solve the matrix equation Ax = b.

At this point we have said all that we will say about the first part. This chapter
belongs to the second.

Primary Goal. Learn about determinants: their computation and their properties.

The determinant of a square matrix A is a number det(A). This incredible quan-
tity is one of the most important invariants of a matrix; as such, it forms the basis
of most advanced computations involving matrices.

In Section 5.1, we will define the determinant in terms of its behavior with
respect to row operations. The determinant satisfies many wonderful properties:
for instance, det(A) ̸= 0 if and only if A is invertible. We will discuss some of these
properties in Section 5.1 as well. In Section 5.2, we will give a recursive formula
for the determinant of a matrix. This formula is very useful, for instance, when
taking the determinant of a matrix with unknown entries; this will be important
in Chapter 6. Finally, in Section 5.3, we will relate determinants to volumes. This
gives a geometric interpretation for determinants, and explains why the deter-
minant is defined the way it is. This interpretation of determinants is a crucial
ingredient in the change-of-variables formula in multivariable calculus.

5.1 Determinants: Definition

Objectives

1. Learn the definition of the determinant.

199
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2. Learn some ways to identify a matrix with determinant zero by sight.

3. Learn how to compute determinants of upper- and lower-triangular matri-
ces.

4. Learn the basic properties of the determinant, and how to apply them.

5. Recipe: compute the determinant using row and column operations.

6. Theorems: existence theorem, invertibility property, multiplicativity prop-
erty, transpose property.

7. Vocabulary: diagonal, upper-triangular, lower-triangular, transpose.

8. Essential Vocabulary: determinant.

In this section, we define the determinant, and we present one way to com-
pute it. Then we discuss some of the many wonderful properties the determinant
enjoys.

5.1.1 The Definition of the Determinant

The determinant of a square matrix A is a real number det(A). It is defined via its
behavior with respect to row operations; this means we can use row reduction to
compute it. We will give a recursive formula for the determinant in Section 5.2.
We will also show in this subsection that the determinant is related to invertibility,
and in Section 5.3 that it is related to volumes.

Essential Definition. The determinant is a function

det:
�

square matrices
	

−→ R

satisfying the following properties:

1. Doing a row replacement on A does not change det(A).

2. Scaling a row of A by a scalar c multiplies the determinant by c.

3. Swapping two rows of a matrix multiplies the determinant by −1.

4. The determinant of the identity matrix In is equal to 1.

In other words, to every square matrix A we assign a number det(A) in a way
that satisfies the above properties.

In each of the first three cases, doing a row operation on a matrix scales the
determinant by a nonzero number. (Multiplying a row by zero is not a row op-
eration.) Therefore, doing row operations on a square matrix A does not change
whether or not the determinant is zero.

The main motivation behind using these particular defining properties is ge-
ometric: see Section 5.3. Another motivation for this definition is that it tells us
how to compute the determinant: we row reduce and keep track of the changes.
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Example. Let us compute det
�

2 1
1 4

�

. First we row reduce, then we compute the
determinant in the opposite order:

�

2 1
1 4

�

det= 7

R1 ←→ R2−−−−−−−→
�

1 4
2 1

�

det= −7

R2 = R2 − 2R1−−−−−−−→
�

1 4
0 −7

�

det= −7

R2 = R2 ÷−7
−−−−−−−→

�

1 4
0 1

�

det= 1

R1 = R1 − 4R2−−−−−−−→
�

1 0
0 1

�

det= 1

The reduced row echelon form of the matrix is the identity matrix I2, so its de-
terminant is 1. The second-last step in the row reduction was a row replacement,
so the second-final matrix also has determinant 1. The previous step in the row
reduction was a row scaling by −1/7; since (the determinant of the second ma-
trix times −1/7) is 1, the determinant of the second matrix must be −7. The first
step in the row reduction was a row swap, so the determinant of the first matrix
is negative the determinant of the second. Thus, the determinant of the original
matrix is 7.

Note that our answer agrees with this definition of the determinant.

Example. Compute det
�

1 0
0 3

�

.

Solution. Let A=
�

1 0
0 3

�

. Since A is obtained from I2 by multiplying the second

row by the constant 3, we have

det(A) = 3 det(I2) = 3 · 1= 3.

Note that our answer agrees with this definition of the determinant.

Example. Compute det





1 0 0
0 0 1
5 1 0



 .

Solution. First we row reduce, then we compute the determinant in the opposite
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order:




1 0 0
0 0 1
5 1 0



 det= −1

R2 ←→ R3−−−−−−−→





1 0 0
5 1 0
0 0 1



 det= 1

R2 = R2 − 5R1−−−−−−−→





1 0 0
0 1 0
0 0 1



 det= 1

The reduced row echelon form is I3, which has determinant 1. Working backwards
from I3 and using the four defining properties, we see that the second matrix also
has determinant 1 (it differs from I3 by a row replacement), and the first matrix
has determinant −1 (it differs from the second by a row swap).

Here is the general method for computing determinants using row reduction.

Recipe: Computing determinants by row reducing. Let A be a square ma-
trix. Suppose that you do some number of row operations on A to obtain a
matrix B in row echelon form. Then

det(A) = (−1)r ·
(product of the diagonal entries of B)

(product of scaling factors used)
,

where r is the number of row swaps performed.

In other words, the determinant of A is the product of diagonal entries of the
row echelon form B, times a factor of ±1 coming from the number of row swaps
you made, divided by the product of the scaling factors used in the row reduction.

Remark. This is an efficient way of computing the determinant of a large matrix,
either by hand or by computer. The computational complexity of row reduction is
O(n3); by contrast, the cofactor expansion algorithm we will learn in Section 5.2
has complexity O(n!) ≈ O(nnpn), which is much larger. (Cofactor expansion has
other uses.)

Example. Compute det





0 −7 −4
2 4 6
3 7 −1



 .

Solution. We row reduce the matrix, keeping track of the number of row swaps
and of the scaling factors used.
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



0 −7 −4
2 4 6
3 7 −1





R1←→R2−−−−→





2 4 6
0 −7 −4
3 7 −1



 r = 1

R1=R1÷2
−−−−−→





1 2 3
0 −7 −4
3 7 −1



 scaling factors= 1
2

R3=R3−3R1−−−−−−→





1 2 3
0 −7 −4
0 1 −10





R2←→R3−−−−→





1 2 3
0 1 −10
0 −7 −4



 r = 2

R3=R3+7R2−−−−−−→





1 2 3
0 1 −10
0 0 −74





We made two row swaps and scaled once by a factor of 1/2, so the recipe says
that

det





0 −7 −4
2 4 6
3 7 −1



= (−1)2 ·
1 · 1 · (−74)

1/2
= −148.

Example. Compute det





1 2 3
2 −1 1
3 0 1



 .

Solution. We row reduce the matrix, keeping track of the number of row swaps
and of the scaling factors used.





1 2 3
2 −1 1
3 0 1





R2=R2−2R1−−−−−−→
R3=R3−3R1





1 2 3
0 −5 −5
0 −6 −8





R2=R2÷−5
−−−−−→





1 2 3
0 1 1
0 −6 −8



 scaling factors= −1
5

R3=R3+6R2−−−−−−→





1 2 3
0 1 1
0 0 −2





We did not make any row swaps, and we scaled once by a factor of −1/5, so
the recipe says that

det





1 2 3
2 −1 1
3 0 1



=
1 · 1 · (−2)
−1/5

= 10.
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Example (The determinant of a 2× 2 matrix). Let us use the recipe to compute
the determinant of a general 2× 2 matrix A=

�

a b
c d

�

.

• If a = 0, then

det
�

a b
c d

�

= det
�

0 b
c d

�

= −det
�

c d
0 b

�

= −bc.

• If a ̸= 0, then

det
�

a b
c d

�

= a · det
�

1 b/a
c d

�

= a · det
�

1 b/a
0 d − c · b/a

�

= a · 1 · (d − bc/a) = ad − bc.

In either case, we recover the formula in Section 4.5:

det
�

a b
c d

�

= ad − bc.

If a matrix is already in row echelon form, then you can simply read off the
determinant as the product of the diagonal entries. It turns out this is true for a
slightly larger class of matrices called triangular.

Definition.

• The diagonal entries of a matrix A are the entries a11, a22, . . .:

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34













a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43





















diagonal entries

• A square matrix is called upper-triangular if its nonzero entries all lie above
the diagonal, and it is called lower-triangular if its nonzero entries all lie
below the diagonal. It is called diagonal if all of its nonzero entries lie on
the diagonal, i.e., if it is both upper-triangular and lower-triangular.

⋆ ⋆ ⋆ ⋆

0 ⋆ ⋆ ⋆

0 0 ⋆ ⋆

0 0 0 ⋆





















upper-triangular

⋆ 0 0 0
⋆ ⋆ 0 0
⋆ ⋆ ⋆ 0
⋆ ⋆ ⋆ ⋆





















lower-triangular
⋆ 0 0 0
0 ⋆ 0 0
0 0 ⋆ 0
0 0 0 ⋆





















diagonal
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Proposition. Let A be an n× n matrix.

1. If A has a zero row or column, then det(A) = 0.

2. If A is upper-triangular or lower-triangular, then det(A) is the product of its
diagonal entries.

Proof.

1. Suppose that A has a zero row. Let B be the matrix obtained by negating
the zero row. Then det(A) = −det(B) by the second defining property. But
A= B, so det(A) = det(B):





1 2 3
0 0 0
7 8 9





R2=−R2−−−−→





1 2 3
0 0 0
7 8 9



 .

Putting these together yields det(A) = −det(A), so det(A) = 0.

Now suppose that A has a zero column. Then A is not invertible by the
invertible matrix theorem in Section 4.6, so its reduced row echelon form has
a zero row. Since row operations do not change whether the determinant is
zero, we conclude det(A) = 0.

2. First suppose that A is upper-triangular, and that one of the diagonal entries
is zero, say aii = 0. We can perform row operations to clear the entries above
the nonzero diagonal entries:







a11 ⋆ ⋆ ⋆
0 a22 ⋆ ⋆
0 0 0 ⋆
0 0 0 a44






−−−→







a11 0 ⋆ 0
0 a22 ⋆ 0
0 0 0 0
0 0 0 a44







In the resulting matrix, the ith row is zero, so det(A) = 0 by the first part.

Still assuming that A is upper-triangular, now suppose that all of the diagonal
entries of A are nonzero. Then A can be transformed to the identity matrix
by scaling the diagonal entries and then doing row replacements:





a ⋆ ⋆
0 b ⋆
0 0 c





scale by
a−1 , b−1 , c−1

−−−−−−−→





1 ⋆ ⋆
0 1 ⋆
0 0 1





row
replacements
−−−−−−−→





1 0 0
0 1 0
0 0 1





det= abc ←−−−−−−− det= 1 ←−−−−−−− det= 1

Since det(In) = 1 and we scaled by the reciprocals of the diagonal entries,
this implies det(A) is the product of the diagonal entries.

The same argument works for lower triangular matrices, except that the row
replacements go down instead of up.
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Example. Compute the determinants of these matrices:




1 2 3
0 4 5
0 0 6









−20 0 0
π 0 0

100 3 −7









17 −3 4
0 0 0

11/2 1 e



 .

Solution. The first matrix is upper-triangular, the second is lower-triangular, and
the third has a zero row:

det





1 2 3
0 4 5
0 0 6



= 1 · 4 · 6= 24

det





−20 0 0
π 0 0

100 3 −7



= −20 · 0 · −7= 0

det





17 −3 4
0 0 0

11/2 1 e



= 0.

A matrix can always be transformed into row echelon form by a series of row
operations, and a matrix in row echelon form is upper-triangular. Therefore, we
have completely justified the recipe for computing the determinant.

The determinant is characterized by its defining properties, since we can com-
pute the determinant of any matrix using row reduction, as in the above recipe.
However, we have not yet proved the existence of a function satisfying the defin-
ing properties! Row reducing will compute the determinant if it exists, but we
cannot use row reduction to prove existence, because we do not yet know that
you compute the same number by row reducing in two different ways.

Theorem (Existence of the determinant). There exists one and only one function
from the set of square matrices to the real numbers, that satisfies the four defining
properties.

We will prove the existence theorem in Section 5.2, by exhibiting a recursive
formula for the determinant. Again, the real content of the existence theorem is:

No matter which row operations you do, you will always compute the same
value for the determinant.

5.1.2 Magical Properties of the Determinant

In this subsection, we will discuss a number of the amazing properties enjoyed by
the determinant: the invertibility property, the multiplicativity property, and the
transpose property.
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Invertibility Property. A square matrix is invertible if and only if det(A) ̸= 0.

Proof. If A is invertible, then it has a pivot in every row and column by the invert-
ible matrix theorem in Section 4.6, so its reduced row echelon form is the identity
matrix. Since row operations do not change whether the determinant is zero, and
since det(In) = 1, this implies det(A) ̸= 0. Conversely, if A is not invertible, then
it is row equivalent to a matrix with a zero row. Again, row operations do not
change whether the determinant is nonzero, so in this case det(A) = 0.

By the invertibility property, a matrix that does not satisfy any of the properties
of the invertible matrix theorem in Section 4.6 has zero determinant.

Corollary. Let A be a square matrix. If the rows or columns of A are linearly depen-
dent, then det(A) = 0.

Proof. If the columns of A are linearly dependent, then A is not invertible by condi-
tion 4 of the invertible matrix theorem in Section 4.6. Suppose now that the rows
of A are linearly dependent. If r1, r2, . . . , rn are the rows of A, then one of the rows
is in the span of the others, so we have an equation like

r2 = 3r1 − r3 + 2r4.

If we perform the following row operations on A:

R2 = R2 − 3R1; R2 = R2 + R3; R2 = R2 − 2R4

then the second row of the resulting matrix is zero. Hence A is not invertible in
this case either.

Alternatively, if the rows of A are linearly dependent, then one can combine
condition 4 of the invertible matrix theorem in Section 4.6 and the transpose prop-
erty below to conclude that det(A) = 0.

In particular, if two rows/columns of Aare multiples of each other, then det(A) =
0. We also recover the fact that a matrix with a row or column of zeros has deter-
minant zero.

Example. The following matrices all have zero determinant:





0 2 −1
0 5 10
0 −7 3



 ,





5 −15 11
3 −9 2
2 −6 16



 ,







3 1 2 4
0 0 0 0
4 2 5 12
−1 3 4 8






,





π e 11
3π 3e 33
12 −7 2



 .

The proofs of the multiplicativity property and the transpose property below,
as well as the cofactor expansion theorem in Section 5.2 and the determinants
and volumes theorem in Section 5.3, use the following strategy: define another
function d : {n× n matrices} → R, and prove that d satisfies the same four defining
properties as the determinant. By the existence theorem, the function d is equal to
the determinant. This is an advantage of defining a function via its properties: in
order to prove it is equal to another function, one only has to check the defining
properties.
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Multiplicativity Property. If A and B are n× n matrices, then

det(AB) = det(A)det(B).

Proof. In this proof, we need to use the notion of an elementary matrix. This is a
matrix obtained by doing one row operation to the identity matrix. There are three
kinds of elementary matrices: those arising from row replacement, row scaling,
and row swaps:





1 0 0
0 1 0
0 0 1





R2 = R2 − 2R1−−−−−−−−→





1 0 0
−2 1 0

0 0 1









1 0 0
0 1 0
0 0 1





R1 = 3R1−−−−−−−−→





3 0 0
0 1 0
0 0 1









1 0 0
0 1 0
0 0 1





R1 ←→ R2−−−−−−−−→





0 1 0
1 0 0
0 0 1





The important property of elementary matrices is the following claim.
Claim: If E is the elementary matrix for a row operation, then EA is the matrix

obtained by performing the same row operation on A.
In other words, left-multiplication by an elementary matrix applies a row op-

eration. For example,




1 0 0
−2 1 0

0 0 1









a11 a12 a13

a21 a22 a23

a31 a32 a33



=





a11 a12 a13

a21 − 2a11 a22 − 2a12 a23 − 2a13

a31 a32 a33









3 0 0
0 1 0
0 0 1









a11 a12 a13

a21 a22 a23

a31 a32 a33



=





3a11 3a12 3a13

a21 a22 a23

a31 a32 a33









0 1 0
1 0 0
0 0 1









a11 a12 a13

a21 a22 a23

a31 a32 a33



=





a21 a22 a23

a11 a12 a13

a31 a32 a33



 .

The proof of the Claim is by direct calculation; we leave it to the reader to gener-
alize the above equalities to n× n matrices.

As a consequence of the Claim and the four defining properties, we have the
following observation. Let C be any square matrix.

1. If E is the elementary matrix for a row replacement, then det(EC) = det(C).
In other words, left-multiplication by E does not change the determinant.

2. If E is the elementary matrix for a row scale by a factor of c, then det(EC) =
c det(C). In other words, left-multiplication by E scales the determinant by a
factor of c.
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3. If E is the elementary matrix for a row swap, then det(EC) = −det(C). In
other words, left-multiplication by E negates the determinant.

Now we turn to the proof of the multiplicativity property. Suppose to begin
that B is not invertible. Then AB is also not invertible: otherwise, (AB)−1AB = In

implies B−1 = (AB)−1A. By the invertibility property, both sides of the equation
det(AB) = det(A)det(B) are zero.

Now assume that B is invertible, so det(B) ̸= 0. Define a function

d :
�

n× n matrices
	

−→ R by d(C) =
det(CB)
det(B)

.

We claim that d satisfies the four defining properties of the determinant.

1. Let C ′ be the matrix obtained by doing a row replacement on C , and let E
be the elementary matrix for this row replacement, so C ′ = EC . Since left-
multiplication by E does not change the determinant, we have det(ECB) =
det(CB), so

d(C ′) =
det(C ′B)
det(B)

=
det(ECB)

det(B)
=

det(CB)
det(B)

= d(C).

2. Let C ′ be the matrix obtained by scaling a row of C by a factor of c, and let
E be the elementary matrix for this row replacement, so C ′ = EC . Since
left-multiplication by E scales the determinant by a factor of c, we have
det(ECB) = c det(CB), so

d(C ′) =
det(C ′B)
det(B)

=
det(ECB)

det(B)
=

c det(CB)
det(B)

= c · d(C).

3. Let C ′ be the matrix obtained by swapping two rows of C , and let E be
the elementary matrix for this row replacement, so C ′ = EC . Since left-
multiplication by E negates the determinant, we have det(ECB) = −det(CB),
so

d(C ′) =
det(C ′B)
det(B)

=
det(ECB)

det(B)
=
−det(CB)

det(B)
= −d(C).

4. We have

d(In) =
det(InB)
det(B)

=
det(B)
det(B)

= 1.

Since d satisfies the four defining properties of the determinant, it is equal to
the determinant by the existence theorem. In other words, for all matrices A, we
have

det(A) = d(A) =
det(AB)
det(B)

.

Multiplying through by det(B) gives det(A)det(B) = det(AB).
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Recall that taking a power of a square matrix A means taking products of A
with itself:

A2 = AA A3 = AAA etc.

If A is invertible, then we define

A−2 = A−1A−1 A−3 = A−1A−1A−1 etc.

For completeness, we set A0 = In if A ̸= 0.

Corollary. If A is a square matrix, then

det(An) = det(A)n

for all n ≥ 1. If A is invertible, then the equation holds for all n ≤ 0 as well; in
particular,

det(A−1) =
1

det(A)
.

Proof. Using the multiplicativity property, we compute

det(A2) = det(AA) = det(A)det(A) = det(A)2

and

det(A3) = det(AAA) = det(A)det(AA) = det(A)det(A)det(A) = det(A)3;

the pattern is clear.
We have

1= det(In) = det(AA−1) = det(A)det(A−1)

by the multiplicativity property and the fourth defining property, which shows that
det(A−1) = det(A)−1. Thus

det(A−2) = det(A−1A−1) = det(A−1)det(A−1) = det(A−1)2 = det(A)−2,

and so on.

Example. Compute det(A100), where

A=
�

4 1
2 1

�

.

Solution. We have det(A) = 4− 2= 2, so

det(A100) = det(A)100 = 2100.

Nowhere did we have to compute the 100th power of A! (We will learn an efficient
way to do that in Section 6.4.)

Here is another application of the multiplicativity property.
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Corollary. Let A1, A2, . . . , Ak be n × n matrices. Then the product A1A2 · · ·Ak is in-
vertible if and only if each Ai is invertible.

Proof. The determinant of the product is the product of the determinants by the
multiplicativity property:

det(A1A2 · · ·Ak) = det(A1)det(A2) · · ·det(Ak).

By the invertibility property, this is nonzero if and only if A1A2 · · ·Ak is invert-
ible. On the other hand, det(A1)det(A2) · · ·det(Ak) is nonzero if and only if each
det(Ai) ̸= 0, which means each Ai is invertible.

Example. For any number n we define

An =
�

1 n
1 2

�

.

Show that the product
A1A2A3A4A5

is not invertible.

Solution. When n= 2, the matrix A2 is not invertible, because its rows are iden-
tical:

A2 =
�

1 2
1 2

�

.

Hence any product involving A2 is not invertible.

In order to state the transpose property, we need to define the transpose of a
matrix.

Definition. The transpose of an m×n matrix A is the n×m matrix AT whose rows
are the columns of A. In other words, the i j entry of AT is a ji.

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

















A
a11 a21 a31

a12 a22 a32

a13 a23 a33

a14 a24 a34





























AT

flip

Like inversion, transposition reverses the order of matrix multiplication.
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Fact. Let A be an m× n matrix, and let B be an n× p matrix. Then

(AB)T = BT AT .

Proof. First suppose that A is a row vector and B is a column vector, i.e., m= p = 1.
Then

AB =
�

a1 a2 · · · an

�









b1

b2
...

bn









= a1 b1 + a2 b2 + · · ·+ an bn

=
�

b1 b2 · · · bn

�









a1

a2
...

an









= BT AT .

Now we use the row-column rule for matrix multiplication. Let r1, r2, . . . , rm

be the rows of A, and let c1, c2, . . . , cp be the columns of B, so

AB =









— r1 —
— r2 —

...
— rm —













| | |
c1 c2 · · · cp

| | |



=









r1c1 r1c2 · · · r1cp

r2c1 r2c2 · · · r2cp
...

...
...

rmc1 rmc2 · · · rmcp









.

By the case we handled above, we have ric j = cT
j rT

i . Then

(AB)T =









r1c1 r2c1 · · · rmc1

r1c2 r2c2 · · · rmc2
...

...
...

r1cp r2cp · · · rmcp









=









cT
1 rT

1 cT
1 rT

2 · · · cT
1 rT

m
cT

2 rT
1 cT

2 rT
2 · · · cT

2 rT
m

...
...

...
cT

p rT
1 cT

p rT
2 · · · cT

p rT
m









=









— cT
1 —

— cT
2 —
...

— cT
p —













| | |
rT

1 rT
2 · · · rT

m
| | |



= BT AT .

Transpose Property. For any square matrix A, we have

det(A) = det(AT ).
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Proof. We follow the same strategy as in the proof of the multiplicativity property:
namely, we define

d(A) = det(AT ),

and we show that d satisfies the four defining properties of the determinant. Again
we use elementary matrices, also introduced in the proof of the multiplicativity
property.

1. Let C ′ be the matrix obtained by doing a row replacement on C , and let E be
the elementary matrix for this row replacement, so C ′ = EC . The elementary
matrix for a row replacement is either upper-triangular or lower-triangular,
with ones on the diagonal:

R1 = R1 + 3R3 :





1 0 3
0 1 0
0 0 1



 R3 = R3 + 3R1 :





1 0 0
0 1 0
3 0 1



 .

It follows that ET is also either upper-triangular or lower-triangular, with
ones on the diagonal, so det(ET ) = 1 by this proposition. By the fact and the
multiplicativity property,

d(C ′) = det((C ′)T ) = det((EC)T ) = det(C T ET )
= det(C T )det(ET ) = det(C T ) = d(C).

2. Let C ′ be the matrix obtained by scaling a row of C by a factor of c, and let
E be the elementary matrix for this row replacement, so C ′ = EC . Then E is
a diagonal matrix:

R2 = cR2 :





1 0 0
0 c 0
0 0 1



 .

Thus det(ET ) = c. By the fact and the multiplicativity property,

d(C ′) = det((C ′)T ) = det((EC)T ) = det(C T ET )
= det(C T )det(ET ) = c det(C T ) = c · d(C).

3. Let C ′ be the matrix obtained by swapping two rows of C , and let E be the
elementary matrix for this row replacement, so C ′ = EC . The E is equal to
its own transpose:

R1←→ R2 :





0 1 0
1 0 0
0 0 1



=





0 1 0
1 0 0
0 0 1





T

.

Since E (hence ET ) is obtained by performing one row swap on the identity
matrix, we have det(ET ) = −1. By the fact and the multiplicativity property,

d(C ′) = det((C ′)T ) = det((EC)T ) = det(C T ET )
= det(C T )det(ET ) = −det(C T ) = −d(C).
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4. Since I T
n = In, we have

d(In) = det(I T
n ) = det(In) = 1.

Since d satisfies the four defining properties of the determinant, it is equal to
the determinant by the existence theorem. In other words, for all matrices A, we
have

det(A) = d(A) = det(AT ).

The transpose property is very useful. For concreteness, we note that det(A) =
det(AT ) means, for instance, that

det





1 2 3
4 5 6
7 8 9



= det





1 4 7
2 5 8
3 6 9



 .

This implies that the determinant has the curious feature that it also behaves well
with respect to column operations. Indeed, a column operation on A is the same
as a row operation on AT , and det(A) = det(AT ).

Corollary. The determinant satisfies the following properties with respect to column
operations:

1. Doing a column replacement on A does not change det(A).

2. Scaling a column of A by a scalar c multiplies the determinant by c.

3. Swapping two columns of a matrix multiplies the determinant by −1.

The previous corollary makes it easier to compute the determinant: one is al-
lowed to do row and column operations when simplifying the matrix. (Of course,
one still has to keep track of how the row and column operations change the de-
terminant.)

Example. Compute det





2 7 4
3 1 3
4 0 1



 .

Solution. It takes fewer column operations than row operations to make this
matrix upper-triangular:





2 7 4
3 1 3
4 0 1





C1=C1−4C3−−−−−−→





−14 7 4
−9 1 3

0 0 1





C1=C1+9C2−−−−−−→





49 7 4
0 1 3
0 0 1




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We performed two column replacements, which does not change the determi-
nant; therefore,

det





2 7 4
3 1 3
4 0 1



= det





49 7 4
0 1 3
0 0 1



= 49.

Multilinearity The following observation is useful for theoretical purposes.
We can think of det as a function of the rows of a matrix:

det(v1, v2, . . . , vn) = det









— v1 —
— v2 —

...
— vn —









.

Multilinearity Property. Let i be a whole number between 1 and n, and fix n − 1
vectors v1, v2, . . . , vi−1, vi+1, . . . , vn in Rn. Then the transformation T : Rn→ R defined
by

T (x) = det(v1, v2, . . . , vi−1, x , vi+1, . . . , vn)

is linear.

Proof. First assume that i = 1, so

T (x) = det(x , v2, . . . , vn).

We have to show that T satisfies the defining properties in Section 4.3.

• By the second defining property, scaling any row of a matrix by a number
c scales the determinant by a factor of c. This implies that T satisfies the
second property, i.e., that

T (cx) = det(cx , v2, . . . , vn) = c det(x , v2, . . . , vn) = cT (x).

• We claim that T (v +w) = T (v) + T (w). If w is in Span{v, v2, . . . , vn}, then

w= cv + c2v2 + · · ·+ cnvn

for some scalars c, c2, . . . , cn. Let A be the matrix with rows v + w, v2, . . . , vn,
so T (v +w) = det(A). By performing the row operations

R1 = R1 − c2R2; R1 = R1 − c3R3; . . . R1 = R1 − cnRn,

the first row of the matrix A becomes

v +w− (c2v2 + · · ·+ cnvn) = v + cv = (1+ c)v.
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Therefore,

T (v +w) = det(A) = det((1+ c)v, v2, . . . , vn)
= (1+ c)det(v, v2, . . . , vn)
= T (v) + cT (v) = T (v) + T (cv).

Doing the opposite row operations

R1 = R1 + c2R2; R1 = R1 + c3R3; . . . R1 = R1 + cnRn

to the matrix with rows cv, v2, . . . , vn shows that

T (cv) = det(cv, v2, . . . , vn)
= det(cv + c2v2 + · · ·+ cnvn, v2, . . . , vn)
= det(w, v2, . . . , vn) = T (w),

which finishes the proof of the first property in this case.

Now suppose that w is not in Span{v, v2, . . . , vn}. This implies that {v, v2, . . . , vn}
is linearly dependent (otherwise it would form a basis for Rn), so T (v) = 0.
If v is not in Span{v2, . . . , vn}, then {v2, . . . , vn} is linearly dependent by the
increasing span criterion in Section 3.2, so T (x) = 0 for all x , as the ma-
trix with rows x , v2, . . . , vn is not invertible. Hence we may assume v is in
Span{v2, . . . , vn}. By the above argument with the roles of v and w reversed,
we have T (v +w) = T (v) + T (w).

For i ̸= 1, we note that

T (x) = det(v1, v2, . . . , vi−1, x , vi+1, . . . , vn)
= −det(x , v2, . . . , vi−1, v1, vi+1, . . . , vn).

By the previously handled case, we know that −T is linear:

−T (cx) = −cT (x) − T (v +w) = −T (v)− T (w).

Multiplying both sides by −1, we see that T is linear.

For example, we have

det





— v1 —
— av + bw —
— v3 —



= a det





— v1 —
— v —
— v3 —



+ b det





— v1 —
— w —
— v3 —





By the transpose property, the determinant is also multilinear in the columns of a
matrix:

det





| | |
v1 av + bw v3

| | |



= a det





| | |
v1 v v3

| | |



+ b det





| | |
v1 w v3

| | |



 .
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Remark (Alternative defining properties). In more theoretical treatments of the
topic, where row reduction plays a secondary role, the defining properties of the
determinant are often taken to be:

1. The determinant det(A) is multilinear in the rows of A.

2. If A has two identical rows, then det(A) = 0.

3. The determinant of the identity matrix is equal to one.

We have already shown that our four defining properties imply these three. Con-
versely, we will prove that these three alternative properties imply our four, so that
both sets of properties are equivalent.

Defining property 2 is just the second defining property in Section 4.3. Suppose
that the rows of A are v1, v2, . . . , vn. If we perform the row replacement Ri = Ri+cR j

on A, then the rows of our new matrix are v1, v2, . . . , vi−1, vi+ cv j, vi+1, . . . , vn, so by
linearity in the ith row,

det(v1, v2, . . . , vi−1, vi + cv j, vi+1, . . . , vn)
= det(v1, v2, . . . , vi−1, vi, vi+1, . . . , vn) + c det(v1, v2, . . . , vi−1, v j, vi+1, . . . , vn)
= det(v1, v2, . . . , vi−1, vi, vi+1, . . . , vn) = det(A),

where det(v1, v2, . . . , vi−1, v j, vi+1, . . . , vn) = 0 because v j is repeated. Thus, the
alternative defining properties imply our first two defining properties. For the
third, suppose that we want to swap row i with row j. Using the second alternative
defining property and multilinearity in the ith and jth rows, we have

0= det(v1, . . . , vi + v j, . . . , vi + v j, . . . , vn)
= det(v1, . . . , vi, . . . , vi + v j, . . . , vn) + det(v1, . . . , v j, . . . , vi + v j, . . . , vn)
= det(v1, . . . , vi, . . . , vi, . . . , vn) + det(v1, . . . , vi, . . . , v j, . . . , vn)

+ det(v1, . . . , v j, . . . , vi, . . . , vn) + det(v1, . . . , v j, . . . , v j, . . . , vn)
= det(v1, . . . , vi, . . . , v j, . . . , vn) + det(v1, . . . , v j, . . . , vi, . . . , vn),

as desired.

Example. We have




−1
2
3



= −





1
0
0



+ 2





0
1
0



+ 3





0
0
1



 .

Therefore,

det





−1 7 2
2 −3 2
3 1 1



= −det





1 7 2
0 −3 2
0 1 1





+ 2 det





0 7 2
1 −3 2
0 1 1



+ 3det





0 7 2
0 −3 2
1 1 1



 .
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This is the basic idea behind cofactor expansions in Section 5.2.

Summary: Magical Properties of the Determinant.

1. There is one and only one function det: {n× n matrices} → R satisfying
the four defining properties.

2. The determinant of an upper-triangular or lower-triangular matrix is the
product of the diagonal entries.

3. A square matrix is invertible if and only if det(A) ̸= 0; in this case,

det(A−1) =
1

det(A)
.

4. If A and B are n× n matrices, then

det(AB) = det(A)det(B).

5. For any square matrix A, we have

det(AT ) = det(A).

6. The determinant can be computed by performing row and/or column
operations.

5.2 Cofactor Expansions

Objectives

1. Learn to recognize which methods are best suited to compute the determi-
nant of a given matrix.

2. Recipes: the determinant of a 3× 3 matrix, compute the determinant using
cofactor expansions.

3. Vocabulary: minor, cofactor.

In this section, we give a recursive formula for the determinant of a matrix,
called a cofactor expansion. The formula is recursive in that we will compute the
determinant of an n × n matrix assuming we already know how to compute the
determinant of an (n− 1)× (n− 1) matrix.

At the end is a supplementary subsection on Cramer’s rule and a cofactor for-
mula for the inverse of a matrix.
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5.2.1 Cofactor Expansions

A recursive formula must have a starting point. For cofactor expansions, the start-
ing point is the case of 1×1 matrices. The definition of determinant directly implies
that

det
�

a
�

= a.

To describe cofactor expansions, we need to introduce some notation.

Definition. Let A be an n× n matrix.

1. The (i, j)minor, denoted Ai j, is the (n−1)× (n−1) matrix obtained from A
by deleting the ith row and the jth column.

2. The (i, j) cofactor Ci j is defined in terms of the minor by

Ci j = (−1)i+ j det(Ai j).

Note that the signs of the cofactors follow a “checkerboard pattern.” Namely,
(−1)i+ j is pictured in this matrix:







+ − + −
− + − +
+ − + −
− + − +






.

Example. For

A=





1 2 3
4 5 6
7 8 9



 ,

compute A23 and C23.

Solution.

A23 =
1 2 3
4 5 6
7 8 9

 !

=
�

1 2
7 8

�

C23 = (−1)2+3 det
�

1 2
7 8

�

= (−1)(−6) = 6

The cofactors Ci j of an n × n matrix are determinants of (n − 1) × (n − 1)
submatrices. Hence the following theorem is in fact a recursive procedure for
computing the determinant.

Theorem (Cofactor expansion). Let A be an n× n matrix with entries ai j.
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1. For any i = 1,2, . . . , n, we have

det(A) =
n
∑

j=1

ai jCi j = ai1Ci1 + ai2Ci2 + · · ·+ ainCin.

This is called cofactor expansion along the ith row.

2. For any j = 1, 2, . . . , n, we have

det(A) =
n
∑

i=1

ai jCi j = a1 jC1 j + a2 jC2 j + · · ·+ an jCn j.

This is called cofactor expansion along the jth column.

Proof. First we will prove that cofactor expansion along the first column computes
the determinant. Define a function d : {n× n matrices} → R by

d(A) =
n
∑

i=1

(−1)i+1ai1 det(Ai1).

We want to show that d(A) = det(A). Instead of showing that d satisfies the four
defining properties of the determinant in Section 5.1, we will prove that it satsifies
the three alternative defining properties in Section 5.1, which were shown to be
equivalent.

1. We claim that d is multilinear in the rows of A. Let A be the matrix with rows
v1, v2, . . . , vi−1, v +w, vi+1, . . . , vn:

A=





a11 a12 a13

b1 + c1 b2 + c2 b3 + c3

a31 a32 a33



 .

Here we let bi and ci be the entries of v and w, respectively. Let B and C be
the matrices with rows v1, v2, . . . , vi−1, v, vi+1, . . . , vn and v1, v2, . . . , vi−1, w, vi+1, . . . , vn,
respectively:

B =





a11 a12 a13

b1 b2 b3

a31 a32 a33



 C =





a11 a12 a13

c1 c2 c3

a31 a32 a33



 .

We wish to show d(A) = d(B)+d(C). For i′ ̸= i, the (i′, 1)-cofactor of A is the
sum of the (i′, 1)-cofactors of B and C , by multilinearity of the determinants
of (n− 1)× (n− 1) matrices:

(−1)3+1 det(A31) = (−1)3+1 det
�

a12 a13

b2 + c2 b3 + c3

�

= (−1)3+1 det
�

a12 a13

b2 b3

�

+ (−1)3+1 det
�

a12 a13

c2 c3

�

= (−1)3+1 det(B31) + (−1)3+1 det(C31).
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On the other hand, the (i, 1)-cofactors of A, B, and C are all the same:

(−1)2+1 det(A21) = (−1)2+1 det
�

a12 a13

a32 a33

�

= (−1)2+1 det(B21) = (−1)2+1 det(C21).

Now we compute

d(A) = (−1)i+1(bi + ci)det(Ai1) +
∑

i′ ̸=i

(−1)i
′+1ai1 det(Ai′1)

= (−1)i+1 bi det(Bi1) + (−1)i+1ci det(Ci1)

+
∑

i′ ̸=i

(−1)i
′+1ai1

�

det(Bi′1) + det(Ci′1)
�

=

�

(−1)i+1 bi det(Bi1) +
∑

i′ ̸=i

(−1)i
′+1ai1 det(Bi′1)

�

+

�

(−1)i+1ci det(Ci1) +
∑

i′ ̸=i

(−1)i
′+1ai1 det(Ci′1)

�

= d(B) + d(C),

as desired. This shows that d(A) satisfies the first defining property in the
rows of A.

We still have to show that d(A) satisfies the second defining property in the
rows of A. Let B be the matrix obtained by scaling the ith row of A by a factor
of c:

A=





a11 a12 a13

a21 a22 a23

a31 a32 a33



 B =





a11 a12 a13

ca21 ca22 ca23

a31 a32 a33



 .

We wish to show that d(B) = c d(A). For i′ ̸= i, the (i′, 1)-cofactor of B
is c times the (i′, 1)-cofactor of A, by multilinearity of the determinants of
(n− 1)× (n− 1)-matrices:

(−1)3+1 det(B31) = (−1)3+1 det
�

a12 a13

ca22 ca23

�

= (−1)3+1 · c det
�

a12 a13

a22 a23

�

= (−1)3+1 · c det(A31).

On the other hand, the (i, 1)-cofactors of A and B are the same:

(−1)2+1 det(B21) = (−1)2+1 det
�

a12 a13

a32 a33

�

= (−1)2+1 det(A21).



222 CHAPTER 5. DETERMINANTS

Now we compute

d(B) = (−1)i+1cai1 det(Bi1) +
∑

i′ ̸=i

(−1)i
′+1ai′1 det(Bi′1)

= (−1)i+1cai1 det(Ai1) +
∑

i′ ̸=i

(−1)i
′+1ai′1 · c det(Ai′1)

= c

�

(−1)i+1cai1 det(Ai1) +
∑

i′ ̸=i

(−1)i
′+1ai′1 det(Ai′1)

�

= c d(A),

as desired. This completes the proof that d(A) is multilinear in the rows of
A.

2. Now we show that d(A) = 0 if A has two identical rows. Suppose that rows
i1, i2 of A are identical, with i1 < i2:

A=







a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a11 a12 a13 a14






.

If i ̸= i1, i2 then the (i, 1)-cofactor of A is equal to zero, since Ai1 is an (n−
1)× (n− 1) matrix with identical rows:

(−1)2+1 det(A21) = (−1)2+1 det





a12 a13 a14

a32 a33 a34

a12 a13 a14



= 0.

The (i1, 1)-minor can be transformed into the (i2, 1)-minor using i2 − i1 − 1
row swaps:

a22 a23 a24
a32 a33 a34
a12 a13 a14

 ! a22 a23 a24
a12 a13 a14
a32 a33 a34

 ! a12 a13 a14
a22 a23 a24
a32 a33 a34

 !

A11 = = A41

Therefore,

(−1)i1+1 det(Ai11) = (−1)i1+1 · (−1)i2−i1−1 det(Ai21) = −(−1)i2+1 det(Ai21).

The two remaining cofactors cancel out, so d(A) = 0, as desired.

3. It remains to show that d(In) = 1. The first is the only one nonzero term in
the cofactor expansion of the identity:

d(In) = 1 · (−1)1+1 det(In−1) = 1.
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This proves that det(A) = d(A), i.e., that cofactor expansion along the first column
computes the determinant.

Now we show that cofactor expansion along the jth column also computes the
determinant. By performing j − 1 column swaps, one can move the jth column
of a matrix to the first column, keeping the other columns in order. For example,
here we move the third column to the first, using two column swaps:

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44









a11 a13 a12 a14
a21 a23 a22 a24
a31 a33 a32 a34
a41 a43 a42 a44









a13 a12 a11 a14
a23 a22 a21 a24
a33 a32 a31 a34
a43 a42 a41 a44









Let B be the matrix obtained by moving the jth column of A to the first column
in this way. Then the (i, j) minor Ai j is equal to the (i, 1) minor Bi1, since deleting
the ith column of A is the same as deleting the first column of B. By construction,
the (i, j)-entry ai j of A is equal to the (i, 1)-entry bi1 of B. Since we know that we
can compute determinants by expanding along the first column, we have

det(B) =
n
∑

i=1

(−1)i+1 bi1 det(Bi1) =
n
∑

i=1

(−1)i+1ai j det(Ai j).

Since B was obtained from A by performing j − 1 column swaps, we have

det(A) = (−1) j−1 det(B) = (−1) j−1
n
∑

i=1

(−1)i+1ai j det(Ai j)

=
n
∑

i=1

(−1)i+ jai j det(Ai j).

This proves that cofactor expansion along the ith column computes the determi-
nant of A.

By the transpose property in Section 5.1, the cofactor expansion along the ith
row of A is the same as the cofactor expansion along the ith column of AT . Again
by the transpose property, we have det(A) = det(AT ), so expanding cofactors along
a row also computes the determinant.

Note that the theorem actually gives 2n different formulas for the determinant:
one for each row and one for each column. For instance, the formula for cofactor
expansion along the first column is

det(A) =
n
∑

i=1

ai1Ci1 = a11C11 + a21C21 + · · ·+ an1Cn1

= a11 det(A11)− a21 det(A21) + a31 det(A31)− · · · ± an1 det(An1).
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Remember, the determinant of a matrix is just a number, defined by the four defin-
ing properties in Section 5.1, so to be clear:

You obtain the same number by expanding cofactors along any row or column.

Now that we have a recursive formula for the determinant, we can finally prove
the existence theorem in Section 5.1.

Proof. Let us review what we actually proved in Section 5.1. We showed that if
det: {n × n matrices} → R is any function satisfying the four defining properties
of the determinant (or the three alternative defining properties), then it also satis-
fies all of the wonderful properties proved in that section. In particular, since det
can be computed using row reduction by this recipe in Section 5.1, it is uniquely
characterized by the defining properties. What we did not prove was the exis-
tence of such a function, since we did not know that two different row reduction
procedures would always compute the same answer.

Consider the function d defined by cofactor expansion along the first row:

d(A) =
n
∑

i=1

(−1)i+1ai1 det(Ai1).

If we assume that the determinant exists for (n−1)× (n−1) matrices, then there
is no question that the function d exists, since we gave a formula for it. Moreover,
we showed in the proof of the theorem above that d satisfies the three alternative
defining properties of the determinant, again only assuming that the determinant
exists for (n− 1)× (n− 1) matrices. This proves the existence of the determinant
for n× n matrices!

This is an example of a proof by mathematical induction. We start by noticing
that det

�

a
�

= a satisfies the four defining properties of the determinant of a
1 × 1 matrix. Then we showed that the determinant of n × n matrices exists,
assuming the determinant of (n−1)× (n−1) matrices exists. This implies that all
determinants exist, by the following chain of logic:

1× 1 exists =⇒ 2× 2 exists =⇒ 3× 3 exists =⇒ ·· · .

Example. Find the determinant of

A=





2 1 3
−1 2 1
−2 2 3



 .

Solution. We make the somewhat arbitrary choice to expand along the first row.
The minors and cofactors are
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2 1 3
−1 2 1
−2 2 3







A11 = =
�

2 1
2 3

�

C11 = +det
�

2 1
2 3

�

= 4

2 1 3
−1 2 1
−2 2 3







A12 = =
�

−1 1
−2 3

�

C12 = −det
�

−1 1
−2 3

�

= 1

2 1 3
−1 2 1
−2 2 3







A13 = =
�

−1 2
−2 2

�

C13 = +det
�

−1 2
−2 2

�

= 2.

Thus,

det(A) = a11C11 + a12C12 + a13C13 = (2)(4) + (1)(1) + (3)(2) = 15.

The determinant of a 2×2 matrix. Let us compute (again) the determinant of a
general 2× 2 matrix

A=
�

a b
c d

�

.

The minors are

a b
c d

� �

A11 = =
�

d
� a b

c d

� �

A12 = =
�

c
�

a b
c d

� �

A21 = =
�

b
� a b

c d

� �

A22 = =
�

a
�

.

The minors are all 1× 1 matrices. As we have seen that the determinant of a
1× 1 matrix is just the number inside of it, the cofactors are therefore

C11 = +det(A11) = d C12 = −det(A12) = −c
C21 = −det(A21) = −b C22 = +det(A22) = a

Expanding cofactors along the first column, we find that

det(A) = aC11 + cC21 = ad − bc,

which agrees with the formulas in this definition in Section 4.5 and this example
in Section 5.1.

The determinant of a 3× 3 matrix. We can also use cofactor expansions to find
a formula for the determinant of a 3× 3 matrix. Let is compute the determinant
of

A=





a11 a12 a13

a21 a22 a23

a31 a32 a33





by expanding along the first row. The minors and cofactors are:
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a11 a12 a13

a21 a22 a23

a31 a32 a33







A11 = =
�

a22 a23

a32 a33

�

C11 = +det
�

a22 a23

a32 a33

�

a11 a12 a13

a21 a22 a23

a31 a32 a33







A12 = =
�

a21 a23

a31 a33

�

C12 = −det
�

a21 a23

a31 a33

�

a11 a12 a13

a21 a22 a23

a31 a32 a33







A13 = =
�

a21 a22

a31 a32

�

C13 = +det
�

a21 a22

a31 a32

�

The determinant is:

det(A) = a11C11 + a12C12 + a13C13

= a11 det
�

a22 a23

a32 a33

�

− a12 det
�

a21 a23

a31 a33

�

+ a13 det
�

a21 a22

a31 a32

�

= a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)
= a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33.

The formula for the determinant of a 3 × 3 matrix looks too complicated to
memorize outright. Fortunately, there is the following mnemonic device.

Recipe: Computing the Determinant of a 3 × 3 Matrix. To compute the
determinant of a 3 × 3 matrix, first draw a larger matrix with the first two
columns repeated on the right. Then add the products of the downward diag-
onals together, and subtract the products of the upward diagonals:

det





a11 a12 a13

a21 a22 a23

a31 a32 a33



=
a11a22a33 + a12a23a31 + a13a21a32

−a13a22a31 − a11a23a32 − a12a21a33

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

−

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

Alternatively, it is not necessary to repeat the first two columns if you allow your
diagonals to “wrap around” the sides of a matrix, like in Pac-Man or Asteroids.

https://en.wikipedia.org/wiki/Pac-Man
https://en.wikipedia.org/wiki/Asteroids_(video_game)
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Example. Find the determinant of A=





1 3 5
2 0 −1
4 −3 1



.

Solution. We repeat the first two columns on the right, then add the products of
the downward diagonals and subtract the products of the upward diagonals:

1 3 5 1 3
2 0 −1 2 0
4 −3 1 4 −3

−
1 3 5 1 3
2 0 −1 2 0
4 −3 1 4 −3

det





1 3 5
2 0 −1
4 −3 1



=
(1)(0)(1) + (3)(−1)(4) + (5)(2)(−3)
− (5)(0)(4)− (1)(−1)(−3)− (3)(2)(1)

= −51.

Cofactor expansions are most useful when computing the determinant of a
matrix that has a row or column with several zero entries. Indeed, if the (i, j)
entry of A is zero, then there is no reason to compute the (i, j) cofactor. In the
following example we compute the determinant of a matrix with two zeros in the
fourth column by expanding cofactors along the fourth column.

Example. Find the determinant of

A=







2 5 −3 −2
−2 −3 2 −5

1 3 −2 0
−1 6 4 0






.

Solution. The fourth column has two zero entries. We expand along the fourth
column to find

det(A) = 2det





−2 −3 2
1 3 −2
−1 6 4



− 5 det





2 5 −3
1 3 −2
−1 6 4





− 0det(don’t care) + 0 det(don’t care).

We only have to compute two cofactors. We can find these determinants using any
method we wish; for the sake of illustration, we will expand cofactors on one and
use the formula for the 3× 3 determinant on the other.

Expanding along the first column, we compute

det





−2 −3 2
1 3 −2
−1 6 4





= −2det
�

3 −2
6 4

�

− det
�

−3 2
6 4

�

− det
�

−3 2
3 −2

�

= −2(24)− (−24)− 0= −48+ 24+ 0= −24.
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Using the formula for the 3× 3 determinant, we have

det





2 5 −3
1 3 −2
−1 6 4



=
(2)(3)(4) + (5)(−2)(−1) + (−3)(1)(6)
− (2)(−2)(6)− (5)(1)(4)− (−3)(3)(−1)

= 11.

Thus, we find that
det(A) = 2(−24)− 5(11) = −103.

Cofactor expansions are also very useful when computing the determinant of
a matrix with unknown entries. Indeed, it is inconvenient to row reduce in this
case, because one cannot be sure whether an entry containing an unknown is a
pivot or not.

Example. Compute the determinant of this matrix containing the unknown λ:

A=







−λ 2 7 12
3 1−λ 2 −4
0 1 −λ 7
0 0 0 2−λ






.

Solution. First we expand cofactors along the fourth row:

det(A) = 0 det
�

· · ·
�

+ 0det
�

· · ·
�

+ 0 det
�

· · ·
�

+ (2−λ)det





−λ 2 7
3 1−λ 2
0 1 −λ



 .

We only have to compute one cofactor. To do so, first we clear the (3, 3)-entry by
performing the column replacement C3 = C3 + λC2, which does not change the
determinant:

det





−λ 2 7
3 1−λ 2
0 1 −λ



= det





−λ 2 7+ 2λ
3 1−λ 2+λ(1−λ)
0 1 0



 .

Now we expand cofactors along the third row to find

det





−λ 2 7+ 2λ
3 1−λ 2+λ(1−λ)
0 1 0



= (−1)2+3 det
�

−λ 7+ 2λ
3 2+λ(1−λ)

�

= −
�

−λ
�

2+λ(1−λ)
�

− 3(7+ 2λ)
�

= −λ3 +λ2 + 8λ+ 21.

Therefore, we have

det(A) = (2−λ)(−λ3 +λ2 + 8λ+ 21) = λ4 − 3λ3 − 6λ2 − 5λ+ 42.
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It is often most efficient to use a combination of several techniques when com-
puting the determinant of a matrix. Indeed, when expanding cofactors on a matrix,
one can compute the determinants of the cofactors in whatever way is most con-
venient. Or, one can perform row and column operations to clear some entries of
a matrix before expanding cofactors, as in the previous example.

Summary: methods for computing determinants. We have several ways of
computing determinants:

1. Special formulas for 2× 2 and 3× 3 matrices.

This is usually the best way to compute the determinant of a small ma-
trix, except for a 3× 3 matrix with several zero entries.

2. Cofactor expansion.

This is usually most efficient when there is a row or column with several
zero entries, or if the matrix has unknown entries.

3. Row and column operations.

This is generally the fastest when presented with a large matrix which
does not have a row or column with a lot of zeros in it.

4. Any combination of the above.

Cofactor expansion is recursive, but one can compute the determinants
of the minors using whatever method is most convenient. Or, you can
perform row and column operations to clear some entries of a matrix
before expanding cofactors.

Remember, all methods for computing the determinant yield the same number.

5.2.2 Cramer’s Rule and Matrix Inverses

Recall from this proposition in Section 4.5 that one can compute the determinant
of a 2× 2 matrix using the rule

A=
�

a b
c d

�

=⇒ A−1 =
1

det(A)

�

d −b
−c a

�

.

We computed the cofactors of a 2×2 matrix in this example; using C11 = d, C12 =
−c, C21 = −b, C22 = a, we can rewrite the above formula as

A−1 =
1

det(A)

�

C11 C21

C12 C22

�

.

It turns out that this formula generalizes to n× n matrices.
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Theorem. Let A be an invertible n× n matrix, with cofactors Ci j. Then

A−1 =
1

det(A)













C11 C21 · · · Cn−1,1 Cn1

C12 C22 · · · Cn−1,2 Cn2
...

... . . . ...
...

C1,n−1 C2,n−1 · · · Cn−1,n−1 Cn,n−1

C1n C2n · · · Cn−1,n Cnn













. (5.2.1)

The matrix of cofactors is sometimes called the adjugate matrix of A, and is
denoted adj(A):

adj(A) =













C11 C21 · · · Cn−1,1 Cn1

C12 C22 · · · Cn−1,2 Cn2
...

...
. . .

...
...

C1,n−1 C2,n−1 · · · Cn−1,n−1 Cn,n−1

C1n C2n · · · Cn−1,n Cnn













.

Note that the (i, j) cofactor Ci j goes in the ( j, i) entry the adjugate matrix, not the
(i, j) entry: the adjugate matrix is the transpose of the cofactor matrix.

Remark. In fact, one always has A · adj(A) = adj(A) · A= det(A)In, whether or not
A is invertible.

Example. Use the theorem to compute A−1, where

A=





1 0 1
0 1 1
1 1 0



 .

Solution. The minors are:

A11 =
�

1 1
1 0

�

A12 =
�

0 1
1 0

�

A13 =
�

0 1
1 1

�

A21 =
�

0 1
1 0

�

A22 =
�

1 1
1 0

�

A23 =
�

1 0
1 1

�

A31 =
�

0 1
1 1

�

A32 =
�

1 1
0 1

�

A33 =
�

1 0
0 1

�

The cofactors are:
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C11 = −1 C12 = 1 C13 = −1

C21 = 1 C22 = −1 C23 = −1

C31 = −1 C32 = −1 C33 = 1

Expanding along the first row, we compute the determinant to be

det(A) = 1 · C11 + 0 · C12 + 1 · C13 = −2.

Therefore, the inverse is

A−1 =
1

det(A)





C11 C21 C31

C12 C22 C32

C13 C23 C33



= −
1
2





−1 1 −1
1 −1 −1
−1 −1 1



 .

It is clear from the previous example that (5.2.1) is a very inefficient way of
computing the inverse of a matrix, compared to augmenting by the identity matrix
and row reducing, as in this subsection in Section 4.5. However, it has its uses.

• If a matrix has unknown entries, then it is difficult to compute its inverse
using row reduction, for the same reason it is difficult to compute the de-
terminant that way: one cannot be sure whether an entry containing an
unknown is a pivot or not.

• This formula is useful for theoretical purposes. Notice that the only denomi-
nators in (5.2.1) occur when dividing by the determinant: computing cofac-
tors only involves multiplication and addition, never division. This means,
for instance, that if the determinant is very small, then any measurement
error in the entries of the matrix is greatly magnified when computing the
inverse. In this way, (5.2.1) is useful in error analysis.

The proof of the theorem uses an interesting trick called Cramer’s Rule, which
gives a formula for the entries of the solution of an invertible matrix equation.

Cramer’s Rule. Let x = (x1, x2, . . . , xn) be the solution of Ax = b, where A is an
invertible n× n matrix and b is a vector in Rn. Let Ai be the matrix obtained from A
by replacing the ith column by b. Then

x i =
det(Ai)
det(A)

.

Proof. First suppose that A is the identity matrix, so that x = b. Then the matrix
Ai looks like this:







1 0 b1 0
0 1 b2 0
0 0 b3 0
0 0 b4 1






.
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Expanding cofactors along the ith row, we see that det(Ai) = bi, so in this case,

x i = bi = det(Ai) =
det(Ai)
det(A)

.

Now let A be a general n× n matrix. One way to solve Ax = b is to row reduce
the augmented matrix (A | b ); the result is ( In | x ). By the case we handled above,
it is enough to check that the quantity det(Ai)/det(A) does not change when we
do a row operation to (A | b ), since det(Ai)/det(A) = x i when A= In.

1. Doing a row replacement on (A | b ) does the same row replacement on A
and on Ai:




a11 a12 a13 b1

a21 a22 a23 b2

a31 a32 a33 b3





R2=R2−2R3−−−−−−→





a11 a12 a13 b1

a21 − 2a31 a22 − 2a32 a23 − 2a33 b2 − 2b3

a31 a32 a33 b3









a11 a12 a13

a21 a22 a23

a31 a32 a33





R2=R2−2R3−−−−−−→





a11 a12 a13

a21 − 2a31 a22 − 2a32 a23 − 2a33

a31 a32 a33









a11 b1 a13

a21 b2 a23

a31 b3 a33





R2=R2−2R3−−−−−−→





a11 b1 a13

a21 − 2a31 b2 − 2b3 a23 − 2a33

a31 b3 a33



 .

In particular, det(A) and det(Ai) are unchanged, so det(A)/det(Ai) is un-
changed.

2. Scaling a row of (A | b ) by a factor of c scales the same row of A and of Ai

by the same factor:




a11 a12 a13 b1

a21 a22 a23 b2

a31 a32 a33 b3





R2=cR2−−−−→





a11 a12 a13 b1

ca21 ca22 ca23 cb2

a31 a32 a33 b3









a11 a12 a13

a21 a22 a23

a31 a32 a33





R2=cR2−−−−→





a11 a12 a13

ca21 ca22 ca23

a31 a32 a33









a11 b1 a13

a21 b2 a23

a31 b3 a33





R2=cR2−−−−→





a11 b1 a13

ca21 cb2 ca23

a31 b3 a33



 .

In particular, det(A) and det(Ai) are both scaled by a factor of c, so det(Ai)/det(A)
is unchanged.
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3. Swapping two rows of (A | b ) swaps the same rows of A and of Ai:





a11 a12 a13 b1

a21 a22 a23 b2

a31 a32 a33 b3





R1←→R2−−−−→





a21 a22 a23 b2

a11 a12 a13 b1

a31 a32 a33 b3









a11 a12 a13

a21 a22 a23

a31 a32 a33





R1←→R2−−−−→





a21 a22 a23

a11 a12 a13

a31 a32 a33









a11 b1 a13

a21 b2 a23

a31 b3 a33





R1←→R2−−−−→





a21 b2 a23

a11 b1 a13

a31 b3 a33



 .

In particular, det(A) and det(Ai) are both negated, so det(Ai)/det(A) is un-
changed.

Example. Compute the solution of Ax = b using Cramer’s rule, where

A=
�

a b
c d

�

b =
�

1
2

�

.

Here the coefficients of A are unknown, but A may be assumed invertible.

Solution. First we compute the determinants of the matrices obtained by replac-
ing the columns of A with b:

A1 =
�

1 b
2 d

�

det(A1) = d − 2b

A2 =
�

a 1
c 2

�

det(A2) = 2a− c.

Now we compute

det(A1)
det(A)

=
d − 2b
ad − bc

det(A2)
det(A)

=
2a− c

ad − bc
.

It follows that

x =
1

ad − bc

�

d − 2b
2a− c

�

.

Now we use Cramer’s rule to prove the first theorem of this subsection.

Proof. The jth column of A−1 is x j = A−1e j. This vector is the solution of the matrix
equation

Ax = A
�

A−1e j

�

= Ine j = e j.
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By Cramer’s rule, the ith entry of x j is det(Ai)/det(A), where Ai is the matrix
obtained from A by replacing the ith column of A by e j:

Ai =







a11 a12 0 a14

a21 a22 1 a24

a31 a32 0 a34

a41 a42 0 a44






(i = 3, j = 2).

Expanding cofactors along the ith column, we see the determinant of Ai is exactly
the ( j, i)-cofactor C ji of A. Therefore, the jth column of A−1 is

x j =
1

det(A)









C j1

C j2
...

C jn









,

and thus

A−1 =





| | |
x1 x2 · · · xn

| | |



=
1

det(A)













C11 C21 · · · Cn−1,1 Cn1

C12 C22 · · · Cn−1,2 Cn2
...

...
. . .

...
...

C1,n−1 C2,n−1 · · · Cn−1,n−1 Cn,n−1

C1n C2n · · · Cn−1,n Cnn













.

5.3 Determinants and Volumes

Objectives

1. Understand the relationship between the determinant of a matrix and the
volume of a parallelepiped.

2. Learn to use determinants to compute volumes of parallelograms and trian-
gles.

3. Learn to use determinants to compute the volume of some curvy shapes like
ellipses.

4. Pictures: parallelepiped, the image of a curvy shape under a linear transfor-
mation.

5. Theorem: determinants and volumes.

6. Vocabulary: parallelepiped.

In this section we give a geometric interpretation of determinants, in terms
of volumes. This will shed light on the reason behind three of the four defining
properties of the determinant. It is also a crucial ingredient in the change-of-
variables formula in multivariable calculus.
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5.3.1 Parallelograms and Parallelepipeds

The determinant computes the volume of the following kind of geometric object.

Definition. The parallelepiped determined by n vectors v1, v2, . . . , vn in Rn is the
subset

P =
�

a1v1 + a2v2 + · · ·+ anvn

�

� 0≤ a1, a2, . . . , an ≤ 1
	

.

In other words, a parallelepiped is the set of all linear combinations of n vectors
with coefficients in [0, 1]. We can draw parallelepipeds using the parallelogram
law for vector addition.

Example (The unit cube). The parallelepiped determined by the standard coordi-
nate vectors e1, e2, . . . , en is the unit n-dimensional cube.

e2

e1
e1

e2

e3

Example (Parallelograms). When n = 2, a parallelepiped is just a paralellogram
in R2. Note that the edges come in parallel pairs.

v2

v1

P

Example. When n= 3, a parallelepiped is a kind of a skewed cube. Note that the
faces come in parallel pairs.

v1

v2

v3

P
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When does a parallelepiped have zero volume? This can happen only if the
parallelepiped is flat, i.e., it is squashed into a lower dimension.

P

v1

v2

v1

v2

v3 P

This means exactly that {v1, v2, . . . , vn} is linearly dependent, which by this corol-
lary in Section 5.1 means that the matrix with rows v1, v2, . . . , vn has determinant
zero. To summarize:

Key Observation. The parallelepiped defined by v1, v2, . . . , vn has zero volume if
and only if the matrix with rows v1, v2, . . . , vn has zero determinant.

5.3.2 Determinants and Volumes

The key observation above is only the beginning of the story: the volume of a
parallelepiped is always a determinant.

Theorem (Determinants and volumes). Let v1, v2, . . . , vn be vectors in Rn, let P be
the parallelepiped determined by these vectors, and let A be the matrix with rows
v1, v2, . . . , vn. Then the absolute value of the determinant of A is the volume of P:

|det(A)|= vol(P).

Proof. Since the four defining properties characterize the determinant, they also
characterize the absolute value of the determinant. Explicitly, |det | is a function
on square matrices which satisfies these properties:

1. Doing a row replacement on A does not change |det(A)|.

2. Scaling a row of A by a scalar c multiplies |det(A)| by |c|.

3. Swapping two rows of a matrix does not change |det(A)|.

4. The determinant of the identity matrix In is equal to 1.
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The absolute value of the determinant is the only such function: indeed, by this
recipe in Section 5.1, if you do some number of row operations on A to obtain a
matrix B in row echelon form, then

|det(A)|=
�

�

�

�

(product of the diagonal entries of B)
(product of scaling factors used)

�

�

�

�

.

For a square matrix A, we abuse notation and let vol(A) denote the volume
of the parallelepiped determined by the rows of A. Then we can regard vol as a
function from the set of square matrices to the real numbers. We will show that
vol also satisfies the above four properties.

1. For simplicity, we consider a row replacement of the form Rn = Rn + cRi.
The volume of a parallelepiped is the volume of its base, times its height:
here the “base” is the parallelepiped determined by v1, v2, . . . , vn−1, and the
“height” is the perpendicular distance of vn from the base.

base

v2

v1

height

base

height

v1

v2

v3

Translating vn by a multiple of vi moves vn in a direction parallel to the base.
This changes neither the base nor the height! Thus, vol(A) is unchanged by
row replacements.

base

v2

v1

height

−−−−→

base

v2

v2 − .5v1 v1

height

base

height

v1

v2

v3
−−−−→

base

height

v1

v2

v3 + .5v1

v3
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2. For simplicity, we consider a row scale of the form Rn = cRn. This scales the
length of vn by a factor of |c|, which also scales the perpendicular distance
of vn from the base by a factor of |c|. Thus, vol(A) is scaled by |c|.

base

v2

v1

height

−−−−→

base

3
4 v2

v1

3
4height

base

height

v1

v2

v3
−−−−→

base

4
3height

v1

v2

4
3 v3

3. Swapping two rows of A just reorders the vectors v1, v2, . . . , vn, hence has
no effect on the parallelepiped determined by those vectors. Thus, vol(A) is
unchanged by row swaps.

v2

v1

−−−−→ v1

v2

v1

v3

v2
−−−−→

v1

v2

v3
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4. The rows of the identity matrix In are the standard coordinate vectors e1, e2, . . . , en.
The associated parallelepiped is the unit cube, which has volume 1. Thus,
vol(In) = 1.

Since |det | is the only function satisfying these properties, we have

vol(P) = vol(A) = |det(A)|.

This completes the proof.

Since det(A) = det(AT ) by the transpose property, the absolute value of det(A)
is also equal to the volume of the parallelepiped determined by the columns of A
as well.

Example (Length). A 1× 1 matrix A is just a number
�

a
�

. In this case, the paral-
lelepiped P determined by its one row is just the interval [0, a] (or [a, 0] if a < 0).
The “volume” of a region in R1 = R is just its length, so it is clear in this case that
vol(P) = |a|.

vol(P) = |a|

0 a

Example (Area). When A is a 2× 2 matrix, its rows determine a parallelogram in
R2. The “volume” of a region in R2 is its area, so we obtain a formula for the area
of a parallelogram: it is the determinant of the matrix whose rows are the vectors
forming two adjacent sides of the parallelogram.

�

a
b

�

�

c
d

�

area=

�

�

�

�

det
�

a b
c d

�

�

�

�

�

= |ad − bc|

It is perhaps surprising that it is possible to compute the area of a parallelogram
without trigonometry. It is a fun geometry problem to prove this formula by hand.
[Hint: first think about the case when the first row of A lies on the x-axis.]
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Example. Find the area of the parallelogram with sides (1, 3) and (2,−3).

Solution. The area is
�

�

�

�

det
�

1 3
2 −3

�

�

�

�

�

= | − 3− 6|= 9.

Example. Find the area of the parallelogram in the picture.

Solution. We choose two adjacent sides to be the rows of a matrix. We choose
the top two:
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�

2
−1

�

�

−1
−4

�

Note that we do not need to know where the origin is in the picture: vectors
are determined by their length and direction, not where they start. The area is

�

�

�

�

det
�

−1 −4
2 −1

�

�

�

�

�

= |1+ 8|= 9.

Example (Area of a triangle). Find the area of the triangle with vertices (−1,−2), (2,−1), (1, 3).

Solution. Doubling a triangle makes a paralellogram. We choose two of its sides
to be the rows of a matrix.



242 CHAPTER 5. DETERMINANTS

�

3
1

�

�

2
5

�

The area of the parallelogram is

�

�

�

�

det
�

2 5
3 1

�

�

�

�

�

= |2− 15|= 13,

so the area of the triangle is 13/2.

You might be wondering: if the absolute value of the determinant is a volume,
what is the geometric meaning of the determinant without the absolute value? The
next remark explains that we can think of the determinant as a signed volume. If
you have taken an integral calculus course, you probably computed negative areas
under curves; the idea here is similar.

Remark (Signed volumes). The theorem on determinants and volumes tells us
that the absolute value of the determinant is the volume of a parallelepiped. This
raises the question of whether the sign of the determinant has any geometric mean-
ing.

A 1 × 1 matrix A is just a number
�

a
�

. In this case, the parallelepiped P de-
termined by its one row is just the interval [0, a] if a ≥ 0, and it is [a, 0] if a < 0.
In this case, the sign of the determinant determines whether the interval is to the
left or the right of the origin.

For a 2 × 2 matrix with rows v1, v2, the sign of the determinant determines
whether v2 is counterclockwise or clockwise from v1. That is, if the counterclock-
wise angle from v1 to v2 is less than 180◦, then the determinant is positive; other-
wise it is negative (or zero).
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v2

v1

det
�

— v1 —
— v2 —

�

> 0

v1

v2

det
�

— v1 —
— v2 —

�

< 0

For example, if v1 =
�a

b

�

, then the counterclockwise rotation of v1 by 90◦ is
v2 =

�−b
a

�

by this example in Section 4.3, and

det
�

a b
−b a

�

= a2 + b2 > 0.

On the other hand, the clockwise rotation of v1 by 90◦ is
� b
−a

�

, and

det
�

a b
b −a

�

= −a2 − b2 < 0.

For a 3×3 matrix with rows v1, v2, v3, the right-hand rule determines the sign of
the determinant. If you point the index finger of your right hand in the direction
of v1 and your middle finger in the direction of v2, then the determinant is positive
if your thumb points roughly in the direction of v3, and it is negative otherwise.

v1

v2

v3

det





— v1 —
— v2 —
— v3 —



> 0

v2

v1

v3

det





— v1 —
— v2 —
— v3 —



< 0

In higher dimensions, the notion of signed volume is still important, but it is
usually defined in terms of the sign of a determinant.
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5.3.3 Volumes of Regions

Let A be an n × n matrix with columns v1, v2, . . . , vn, and let T : Rn → Rn be the
associated matrix transformation T (x) = Ax . Then T (e1) = v1 and T (e2) = v2, so
T takes the unit cube C to the parallelepiped P determined by v1, v2, . . . , vn:

Ce2

e1

T




| |
v1 v2

| |





v2

v1

P

Since the unit cube has volume 1 and its image has volume |det(A)|, the trans-
formation T scaled the volume of the cube by a factor of |det(A)|. To rephrase:

If A is an n× n matrix with corresponding matrix transformation T : Rn→ Rn,
and if C is the unit cube in Rn, then the volume of T (C) is |det(A)|.

The notation T (S) means the image of the region S under the transformation
T . In set builder notation, this is the subset

T (S) =
�

T (x) | x in S
	

.

In fact, T scales the volume of any region in Rn by the same factor, even for
curvy regions.

Theorem. Let A be an n × n matrix, and let T : Rn → Rn be the associated matrix
transformation T (x) = Ax. If S is any region in Rn, then

vol(T (S)) = |det(A)| · vol(S).

Proof. Let C be the unit cube, let v1, v2, . . . , vn be the columns of A, and let P
be the parallelepiped determined by these vectors, so T (C) = P and vol(P) =
|det(A)|. For ϵ > 0 we let ϵC be the cube with side lengths ϵ, i.e., the parallelepiped
determined by the vectors ϵe1,ϵe2, . . . ,ϵen, and we define ϵP similarly. By the
second defining property, T takes ϵC to ϵP. The volume of ϵC is ϵn (we scaled each
of the n standard vectors by a factor of ϵ) and the volume of ϵP is ϵn|det(A)| (for
the same reason), so we have shown that T scales the volume of ϵC by |det(A)|.
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ϵe2

ϵe1

ϵC

vol(ϵC) = ϵn

T




| |
v1 v2

| |





ϵv2

ϵv1

ϵP

vol(ϵP) = ϵn|det(A)|

By the first defining property, the image of a translate of ϵC is a translate of
ϵP:

T (x + ϵC) = T (x) + ϵT (C) = T (x) + ϵP.

Since a translation does not change volumes, this proves that T scales the volume
of a translate of ϵC by |det(A)|.

At this point, we need to use techniques from multivariable calculus, so we
only give an idea of the rest of the proof. Any region S can be approximated
by a collection of very small cubes of the form x + ϵC . The image T (S) is then
approximated by the image of this collection of cubes, which is a collection of very
small parallelepipeds of the form T (x) + ϵP.

x + ϵC

S

T

T (x) + ϵP

T (S)

The volume of S is closely approximated by the sum of the volumes of the
cubes; in fact, as ϵ goes to zero, the limit of this sum is precisely vol(S). Likewise,
the volume of T (S) is equal to the sum of the volumes of the parallelepipeds,
take in the limit as ϵ→ 0. The key point is that the volume of each cube is scaled by
|det(A)|. Therefore, the sum of the volumes of the parallelepipeds is |det(A)| times
the sum of the volumes of the cubes. This proves that vol(T (S)) = |det(A)|vol(S).

Example. Let S be a half-circle of radius 1, let

A=
�

1 2
2 1

�

,
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and define T : R2→ R2 by T (x) = Ax . What is the area of T (S)?

S �

1 2
2 1

�

T
T (S)

Solution. The area of the unit circle is π, so the area of S is π/2. The transfor-
mation T scales areas by a factor of |det(A)|= |1− 4|= 3, so

vol(T (S)) = 3vol(S) =
3π
2

.

Example (Area of an ellipse). Find the area of the interior E of the ellipse defined
by the equation

�

2x − y
2

�2

+
�

y + 3x
3

�2

= 1.

Solution. This ellipse is obtained from the unit circle X 2 + Y 2 = 1 by the linear
change of coordinates

X =
2x − y

2

Y =
y + 3x

3
.

In other words, if we define a linear transformation T : R2→ R2 by

T
�

x
y

�

=
�

(2x − y)/2
(y + 3x)/3

�

,

then T
�x

y

�

lies on the unit circle C whenever
�x

y

�

lies on E.

C�

1 −1/2
1 1/3

�

T

E
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We compute the standard matrix A for T by evaluating on the standard coor-
dinate vectors:

T
�

1
0

�

=
�

1
1

�

T
�

0
1

�

=
�

−1/2
1/3

�

=⇒ A=
�

1 −1/2
1 1/3

�

.

Therefore, T scales areas by a factor of |det(A)|= |13 +
1
2 |=

5
6 . The area of the unit

circle is π, so

π= vol(C) = vol(T (E)) = |det(A)| · vol(E) =
5
6

vol(E),

and thus the area of E is 6π/5.

Remark (Multiplicativity of |det | ). The above theorem also gives a geometric
reason for multiplicativity of the (absolute value of the) determinant. Indeed, let
A and B be n × n matrices, and let T, U : Rn → Rn be the corresponding matrix
transformations. If C is the unit cube, then

vol
�

T ◦ U(C)
�

= vol
�

T (U(C))
�

= |det(A)|vol(U(C))
= |det(A)| · |det(B)|vol(C)
= |det(A)| · |det(B)|.

On the other hand, the matrix for the composition T ◦ U is the product AB, so

vol
�

T ◦ U(C)
�

= |det(AB)|vol(C) = |det(AB)|.

Thus |det(AB)|= |det(A)| · |det(B)|.
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Chapter 6

Eigenvalues and Eigenvectors

Primary Goal. Solve the matrix equation Ax = λx .

This chapter constitutes the core of any first course on linear algebra: eigen-
values and eigenvectors play a crucial role in most real-world applications of the
subject.

Example. In a population of rabbits,

1. half of the newborn rabbits survive their first year;

2. of those, half survive their second year;

3. the maximum life span is three years;

4. rabbits produce 0, 6, 8 baby rabbits in their first, second, and third years,
respectively.

What is the asymptotic behavior of this system? What will the rabbit population
look like in 100 years?

Use this link to view the online demo

Left: the population of rabbits in a given year. Right: the proportions of rabbits in
that year. Choose any values you like for the starting population, and click “Advance
1 year” several times. What do you notice about the long-term behavior of the ratios?
This phenomenon turns out to be due to eigenvectors.

In Section 6.3 we introduce the notion of similar matrices, and demonstrate
that similar matrices do indeed behave similarly. In Section 6.4 we study matrices
that are similar to diagonal matrices and in Section 6.5 we study matrices that are
similar to rotation-scaling matrices, thus gaining a solid geometric understanding
of large classes of matrices. The next chapter will then zero in on applications of
eigenvalues and eigenvectors to real-world problems.

249

https://ulrikbuchholtz.dk/ila/demos/rabbits.html
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6.1 Eigenvalues and Eigenvectors

Objectives

1. Learn the definition of eigenvector and eigenvalue.

2. Learn to find eigenvectors and eigenvalues geometrically.

3. Learn to decide if a number is an eigenvalue of a matrix, and if so, how to
find an associated eigenvector.

4. Recipe: find a basis for the λ-eigenspace.

5. Pictures: whether or not a vector is an eigenvector, eigenvectors of standard
matrix transformations.

6. Theorem: the expanded invertible matrix theorem.

7. Vocabulary: eigenspace.

8. Essential Vocabulary: eigenvector, eigenvalue.

In this section, we define eigenvalues and eigenvectors. These form the most
important facet of the structure theory of square matrices. As such, eigenvalues
and eigenvectors tend to play a key role in the real-life applications of linear alge-
bra.

6.1.1 Eigenvalues and Eigenvectors

Here is the most important definition in this text.

Essential Definition. Let A be an n× n matrix.

1. An eigenvector of A is a nonzero vector v in Rn such that Av = λv, for some
scalar λ.

2. An eigenvalue of A is a scalar λ such that the equation Av = λv has a non-
trivial solution.

If Av = λv for v ̸= 0, we say that λ is the eigenvalue for v, and that v is an
eigenvector for λ.

The German prefix “eigen” roughly translates to “self” or “own”. An eigenvec-
tor of A is a vector that is taken to a multiple of itself by the matrix transformation
T (x) = Ax , which perhaps explains the terminology. On the other hand, “eigen” is
often translated as “characteristic”; we may think of an eigenvector as describing
an intrinsic, or characteristic, property of A.
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Note. Eigenvalues and eigenvectors are only for square matrices.

Eigenvectors are by definition nonzero. Eigenvalues may be equal to zero.

We do not consider the zero vector to be an eigenvector: since A0 = 0 = λ0
for every scalar λ, the associated eigenvalue would be undefined.

If someone hands you a matrix A and a vector v, it is easy to check if v is an
eigenvector of A: simply multiply v by A and see if Av is a scalar multiple of v.
On the other hand, given just the matrix A, it is not obvious at all how to find the
eigenvectors. We will learn how to do this in Section 6.2.

Example (Verifying eigenvectors). Consider the matrix

A=
�

2 2
−4 8

�

and vectors v =
�

1
1

�

w=
�

2
1

�

.

Which are eigenvectors? What are their eigenvalues?

Solution. We have

Av =
�

2 2
−4 8

��

1
1

�

=
�

4
4

�

= 4v.

Hence, v is an eigenvector of A, with eigenvalue λ= 4. On the other hand,

Aw=
�

2 2
−4 8

��

2
1

�

=
�

6
0

�

.

which is not a scalar multiple of w. Hence, w is not an eigenvector of A.

v

Av
w

Aw0

v is an eigenvector

w is not an eigenvector

Example (Verifying eigenvectors). Consider the matrix

A=





0 6 8
1
2 0 0
0 1

2 0



 and vectors v =





16
4
1



 w=





2
2
2



 .

Which are eigenvectors? What are their eigenvalues?
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Solution. We have

Av =





0 6 8
1
2 0 0
0 1

2 0









16
4
1



=





32
8
2



= 2v.

Hence, v is an eigenvector of A, with eigenvalue λ= 2. On the other hand,

Aw=





0 6 8
1
2 0 0
0 1

2 0









2
2
2



=





28
1
1



 ,

which is not a scalar multiple of w. Hence, w is not an eigenvector of A.

Example (An eigenvector with eigenvalue 0). Let

A=
�

1 3
2 6

�

v =
�

−3
1

�

.

Is v an eigenvector of A? If so, what is its eigenvalue?

Solution. The product is

Av =
�

1 3
2 6

��

−3
1

�

=
�

0
0

�

= 0v.

Hence, v is an eigenvector with eigenvalue zero.
As noted above, an eigenvalue is allowed to be zero, but an eigenvector is not.

To say that Av = λv means that Av and λv are collinear with the origin. So,
an eigenvector of A is a nonzero vector v such that Av and v lie on the same line
through the origin. In this case, Av is a scalar multiple of v; the eigenvalue is the
scaling factor.

v
AvwAw

0
v is an eigenvector

w is not an eigenvector

For matrices that arise as the standard matrix of a linear transformation, it is
often best to draw a picture, then find the eigenvectors and eigenvalues geometri-
cally by studying which vectors are not moved off of their line. For a transformation
that is defined geometrically, it is not necessary even to compute its matrix to find
the eigenvectors and eigenvalues.



6.1. EIGENVALUES AND EIGENVECTORS 253

Example (Reflection). Here is an example of this. Let T : R2 → R2 be the linear
transformation that reflects over the line L defined by y = −x , and let A be the
matrix for T . We will find the eigenvalues and eigenvectors of A without doing
any computations.

This transformation is defined geometrically, so we draw a picture.

Lu

Au
0

The vector u is not an eigenvector, because Au is not collinear with u and the
origin.

L

z

Az

0

The vector z is not an eigenvector either.

L

v

Av

0

The vector v is an eigenvector because Av is collinear with v and the origin. The
vector Av has the same length as v, but the opposite direction, so the associated
eigenvalue is −1.
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L

w
Aw

0

The vector w is an eigenvector because Aw is collinear with w and the origin:
indeed, Aw is equal to w! This means that w is an eigenvector with eigenvalue 1.

It appears that all eigenvectors lie either on L, or on the line perpendicular to
L. The vectors on L have eigenvalue 1, and the vectors perpendicular to L have
eigenvalue −1.

Use this link to view the online demo

An eigenvector of A is a vector x such that Ax is collinear with x and the origin. Click
and drag the head of x to convince yourself that all such vectors lie either on L, or on
the line perpendicular to L.

We will now give five more examples of this nature

Example (Projection). Let T : R2→ R2 be the linear transformation that projects a
vector vertically onto the x-axis, and let A be the matrix for T . Find the eigenvalues
and eigenvectors of A without doing any computations.

Solution. This transformation is defined geometrically, so we draw a picture.

u

Au
0

The vector u is not an eigenvector, because Au is not collinear with u and the
origin.

https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=0,-1:-1,0&nospace
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z

Az
0

The vector z is not an eigenvector either.

v

Av0

The vector v is an eigenvector. Indeed, Av is the zero vector, which is collinear
with v and the origin; since Av = 0v, the associated eigenvalue is 0.

w Aw
0

The vector w is an eigenvector because Aw is collinear with w and the origin:
indeed, Aw is equal to w! This means that w is an eigenvector with eigenvalue 1.

It appears that all eigenvectors lie on the x-axis or the y-axis. The vectors on
the x-axis have eigenvalue 1, and the vectors on the y-axis have eigenvalue 0.

Use this link to view the online demo

An eigenvector of A is a vector x such that Ax is collinear with x and the origin. Click
and drag the head of x to convince yourself that all such vectors lie on the coordinate
axes.

https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=1,0:0,0&nospace
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Example (Identity). Find all eigenvalues and eigenvectors of the identity matrix
In.

Solution. The identity matrix has the property that Inv = v for all vectors v in
Rn. We can write this as Inv = 1 · v, so every nonzero vector is an eigenvector with
eigenvalue 1.

Use this link to view the online demo

Every nonzero vector is an eigenvector of the identity matrix.

Example (Dilation). Let T : R2→ R2 be the linear transformation that dilates by a
factor of 1.5, and let A be the matrix for T . Find the eigenvalues and eigenvectors
of A without doing any computations.

Solution. We have
Av = T (v) = 1.5v

for every vector v in R2. Therefore, by definition every nonzero vector is an eigen-
vector with eigenvalue 1.5.

v
Av

0

Use this link to view the online demo

Every nonzero vector is an eigenvector of a dilation matrix.

Example (Shear). Let

A=
�

1 1
0 1

�

and let T (x) = Ax , so T is a shear in the x-direction. Find the eigenvalues and
eigenvectors of A without doing any computations.

Solution. In equations, we have

A
�

x
y

�

=
�

1 1
0 1

��

x
y

�

=
�

x + y
y

�

.

This tells us that a shear takes a vector and adds its y-coordinate to its x-coordinate.
Since the x-coordinate changes but not the y-coordinate, this tells us that any vec-
tor v with nonzero y-coordinate cannot be collinear with Av and the origin.

https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=1,0:0,1&nospace
https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=1.5,0:0,1.5&nospace
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v
Av

0

On the other hand, any vector v on the x-axis has zero y-coordinate, so it is
not moved by A. Hence v is an eigenvector with eigenvalue 1.

w Aw0

Accordingly, all eigenvectors of A lie on the x-axis, and have eigenvalue 1.

Use this link to view the online demo

All eigenvectors of a shear lie on the x-axis. Click and drag the head of x to find the
eigenvectors.

Example (Rotation). Let T : R2 → R2 be the linear transformation that rotates
counterclockwise by 90◦, and let A be the matrix for T . Find the eigenvalues and
eigenvectors of A without doing any computations.

Solution. If v is any nonzero vector, then Av is rotated by an angle of 90◦ from
v. Therefore, Av is not on the same line as v, so v is not an eigenvector. And of
course, the zero vector is never an eigenvector.

v
Av

0

https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=1,1:0,1&nospace
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Therefore, this matrix has no eigenvectors and eigenvalues.

Use this link to view the online demo

This rotation matrix has no eigenvectors. Click and drag the head of x to find one.

Here we mention one basic fact about eigenvectors.

Fact (Eigenvectors with distinct eigenvalues are linearly independent). Let v1, v2, . . . , vk

be eigenvectors of a matrix A, and suppose that the corresponding eigenvaluesλ1,λ2, . . . ,λk

are distinct (all different from each other). Then {v1, v2, . . . , vk} is linearly indepen-
dent.

Proof. Suppose that {v1, v2, . . . , vk} were linearly dependent. According to the in-
creasing span criterion in Section 3.2, this means that for some j, the vector v j is in
Span{v1, v2, . . . , v j−1}. If we choose the first such j, then {v1, v2, . . . , v j−1} is linearly
independent. Note that j > 1 since v1 ̸= 0.

Since v j is in Span{v1, v2, . . . , v j−1},, we can write

v j = c1v1 + c2v2 + · · ·+ c j−1v j−1

for some scalars c1, c2, . . . , c j−1. Multiplying both sides of the above equation by A
gives

λ j v j = Av j = A
�

c1v1 + c2v2 + · · ·+ c j−1v j−1

�

= c1Av1 + c2Av2 + · · ·+ c j−1Av j−1

= c1λ1v1 + c2λ2v2 + · · ·+ c j−1λ j−1v j−1.

Subtracting λ j times the first equation from the second gives

0= λ j v j −λ j v j = c1(λ1 −λ j)v1 + c2(λ2 −λ j)v2 + · · ·+ c j−1(λ j−1 −λ j)v j−1.

Sinceλi ̸= λ j for i < j, this is an equation of linear dependence among v1, v2, . . . , v j−1,
which is impossible because those vectors are linearly independent. Therefore,
{v1, v2, . . . , vk} must have been linearly independent after all.

When k = 2, this says that if v1, v2 are eigenvectors with eigenvalues λ1 ̸= λ2,
then v2 is not a multiple of v1. In fact, any nonzero multiple cv1 of v1 is also an
eigenvector with eigenvalue λ1:

A(cv1) = cAv1 = c(λ1v1) = λ1(cv1).

As a consequence of the above fact, we have the following.

An n× n matrix A has at most n eigenvalues.

https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=0,-1:1,0&nospace
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6.1.2 Eigenspaces

Suppose that A is a square matrix. We already know how to check if a given vector
is an eigenvector of A and in that case to find the eigenvalue. Our next goal is
to check if a given real number is an eigenvalue of A and in that case to find all
of the corresponding eigenvectors. Again this will be straightforward, but more
involved. The only missing piece, then, will be to find the eigenvalues of A; this is
the main content of Section 6.2.

Let A be an n×n matrix, and let λ be a scalar. The eigenvectors with eigenvalue
λ, if any, are the nonzero solutions of the equation Av = λv. We can rewrite this
equation as follows:

Av = λv
⇐⇒ Av −λv = 0

⇐⇒ Av −λInv = 0

⇐⇒ (A−λIn)v = 0.

Therefore, the eigenvectors of A with eigenvalue λ, if any, are the nontrivial solu-
tions of the matrix equation (A−λIn)v = 0, i.e., the nonzero vectors in Nul(A−λIn).
If this equation has no nontrivial solutions, then λ is not an eigenvalue of A.

The above observation is important because it says that finding the eigenvec-
tors for a given eigenvalue means solving a homogeneous system of equations. For
instance, if

A=





7 1 3
−3 2 −3
−3 −2 −1



 ,

then an eigenvector with eigenvalue λ is a nontrivial solution of the matrix equa-
tion





7 1 3
−3 2 −3
−3 −2 −1









x
y
z



= λ





x
y
z



 .

This translates to the system of equations

( 7x + y + 3z = λx
−3x + 2y − 3z = λy
−3x − 2y − z = λz

−−−→

( (7−λ)x + y + 3z = 0
−3x + (2−λ)y − 3z = 0
−3x − 2y + (−1−λ)z = 0.

This is the same as the homogeneous matrix equation





7−λ 1 3
−3 2−λ −3
−3 −2 −1−λ









x
y
z



= 0,

i.e., (A−λI3)v = 0.
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Definition. Let A be an n × n matrix, and let λ be an eigenvalue of A. The λ-
eigenspace of A is the solution set of (A−λIn)v = 0, i.e., the subspace Nul(A−λIn).

The λ-eigenspace is a subspace because it is the null space of a matrix, namely,
the matrix A− λIn. This subspace consists of the zero vector and all eigenvectors
of A with eigenvalue λ.

Note. Since a nonzero subspace is infinite, every eigenvalue has infinitely many
eigenvectors. (For example, multiplying an eigenvector by a nonzero scalar gives
another eigenvector.) On the other hand, there can be at most n linearly indepen-
dent eigenvectors of an n× n matrix, since Rn has dimension n.

Example (Computing eigenspaces). For each of the numbers λ= −2,1, 3, decide
if λ is an eigenvalue of the matrix

A=
�

2 −4
−1 −1

�

,

and if so, compute a basis for the λ-eigenspace.

Solution. The number 3 is an eigenvalue of A if and only if Nul(A − 3I2) is
nonzero. Hence, we have to solve the matrix equation (A− 3I2)v = 0. We have

A− 3I2 =
�

2 −4
−1 −1

�

− 3
�

1 0
0 1

�

=
�

−1 −4
−1 −4

�

.

The reduced row echelon form of this matrix is
�

1 4
0 0

�

parametric
−−−−−→

form

§

x = −4y
y = y

parametric
−−−−−→
vector form

�

x
y

�

= y
�

−4
1

�

.

Since y is a free variable, the null space of A−3I2 is nonzero, so 3 is an eigenvector.
A basis for the 3-eigenspace is

��−4
1

�	

.
Concretely, we have shown that the eigenvectors of A with eigenvalue 3 are

exactly the nonzero multiples of
�−4

1

�

. In particular,
�−4

1

�

is an eigenvector, which
we can verify:

�

2 −4
−1 −1

��

−4
1

�

=
�

−12
3

�

= 3
�

−4
1

�

.

The number 1 is an eigenvalue of A if and only if Nul(A− I2) is nonzero. Hence,
we have to solve the matrix equation (A− I2)v = 0. We have

A− I2 =
�

2 −4
−1 −1

�

−
�

1 0
0 1

�

=
�

1 −4
−1 −2

�

.

This matrix has determinant −6, so it is invertible. By the invertible matrix theo-
rem in Section 4.6, we have Nul(A− I2) = {0}, so 1 is not an eigenvalue.

The eigenvectors of A with eigenvalue −2, if any, are the nonzero solutions of
the matrix equation (A+ 2I2)v = 0. We have

A+ 2I2 =
�

2 −4
−1 −1

�

+ 2
�

1 0
0 1

�

=
�

4 −4
−1 1

�

.
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The reduced row echelon form of this matrix is
�

1 −1
0 0

�

parametric
−−−−−→

form

n x = y
y = y

parametric
−−−−−→
vector form

�

x
y

�

= y
�

1
1

�

.

Hence there exist eigenvectors with eigenvalue −2, namely, any nonzero multiple
of
�1

1

�

. A basis for the −2-eigenspace is
��1

1

�	

.

Use this link to view the online demo

The 3-eigenspace is the line spanned by
�−4

1

�

. This means that A scales every vector
in that line by a factor of 3. Likewise, the −2-eigenspace is the line spanned by

�1
1

�

.
Click and drag the vector x around to see how A acts on that vector.

Example (Computing eigenspaces). For each of the numbers λ= 0, 1
2 , 2, decide if

λ is an eigenvector of the matrix

A=





7/2 0 3
−3/2 2 −3
−3/2 0 −1



 ,

and if so, compute a basis for the λ-eigenspace.

Solution. The number 2 is an eigenvalue of A if and only if Nul(A − 2I3) is
nonzero. Hence, we have to solve the matrix equation (A− 2I3)v = 0. We have

A− 2I3 =





7/2 0 3
−3/2 2 −3
−3/2 0 −1



− 2





1 0 0
0 1 0
0 0 1



=





3/2 0 3
−3/2 0 −3
−3/2 0 −3



 .

The reduced row echelon form of this matrix is




1 0 2
0 0 0
0 0 0





parametric
−−−−−→

form

( x = −2z
y = y
z = z

parametric
−−−−−→
vector form





x
y
z



= y





0
1
0



+ z





−2
0
1



 .

The matrix A− 2I3 has two free variables, so the null space of A− 2I3 is nonzero,
and thus 2 is an eigenvalue. A basis for the 2-eigenspace is











0
1
0



 ,





−2
0
1











.

This is a plane in R3.
The eigenvectors of A with eigenvalue 1

2 , if any, are the nonzero solutions of
the matrix equation (A− 1

2 I3)v = 0. We have

A−
1
2

I3 =





7/2 0 3
−3/2 2 −3
−3/2 0 1



−
1
2





1 0 0
0 1 0
0 0 1



=





3 0 3
−3/2 3/2 −3
−3/2 0 −3/2



 .

https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=2,-4:-1,-1&nomult
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The reduced row echelon form of this matrix is




1 0 1
0 1 −1
0 0 0





parametric
−−−−−→

form

¨ x = −z
y = z
z = z

parametric
−−−−−→
vector form





x
y
z



= z





−1
1
1



 .

Hence there exist eigenvectors with eigenvalue 1
2 , so 1

2 is an eigenvalue. A basis
for the 1

2 -eigenspace is










−1
1
1











.

This is a line in R3.
The number 0 is an eigenvalue of A if and only if Nul(A− 0I3) = Nul(A) is

nonzero. This is the same as asking whether A is noninvertible, by the invertible
matrix theorem in Section 4.6. The determinant of A is det(A) = 2 ̸= 0, so A is
invertible by the invertibility property in Section 5.1. It follows that 0 is not an
eigenvalue of A.

Use this link to view the online demo

The 2-eigenspace is the violet plane. This means that A scales every vector in that
plane by a factor of 2. The 1

2 -eigenspace is the green line. Click and drag the vector x
around to see how A acts on that vector.

Example (Reflection). Let T : R2 → R2 be the linear transformation that reflects
over the line L defined by y = −x , and let A be the matrix for T . Find all
eigenspaces of A.

Solution. We showed in this example that all eigenvectors with eigenvalue 1 lie
on L, and all eigenvectors with eigenvalue −1 lie on the line L⊥ that is perpendic-
ular to L. Hence, L is the 1-eigenspace, and L⊥ is the −1-eigenspace.

None of this required any computations, but we can verify our conclusions
using algebra. First we compute the matrix A:

T
�

1
0

�

=
�

0
−1

�

T
�

0
1

�

=
�

−1
0

�

=⇒ A=
�

0 −1
−1 0

�

.

Computing the 1-eigenspace means solving the matrix equation (A− I2)v = 0. We
have

A− I2 =
�

0 −1
−1 0

�

−
�

1 0
0 1

�

=
�

−1 −1
−1 −1

�

RREF
−−→

�

1 1
0 0

�

.

The parametric form of the solution set is x = −y , or equivalently, y = −x , which
is exactly the equation for L. Computing the −1-eigenspace means solving the
matrix equation (A+ I2)v = 0; we have

A+ I2 =
�

0 −1
−1 0

�

+
�

1 0
0 1

�

=
�

1 −1
−1 1

�

RREF
−−→

�

1 −1
0 0

�

.

https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=7/2,0,3:-3/2,2,-3:-3/2,0,-1&nomult
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The parametric form of the solution set is x = y , or equivalently, y = x , which is
exactly the equation for L⊥.

Use this link to view the online demo

The violet line L is the 1-eigenspace, and the green line L⊥ is the −1-eigenspace.

Recipes: Eigenspaces. Let A be an n× n matrix and let λ be a number.

1. λ is an eigenvalue of A if and only if (A− λIn)v = 0 has a nontrivial
solution, if and only if Nul(A−λIn) ̸= {0}.

2. In this case, finding a basis for the λ-eigenspace of A means finding a
basis for Nul(A − λIn), which can be done by finding the parametric
vector form of the solutions of the homogeneous system of equations
(A−λIn)v = 0.

3. The dimension of the λ-eigenspace of A is equal to the number of free
variables in the system of equations (A−λIn)v = 0, which is the number
of columns of A−λIn without pivots.

4. The eigenvectors with eigenvalue λ are the nonzero vectors in Nul(A−
λIn), or equivalently, the nontrivial solutions of (A−λIn)v = 0.

We conclude with an observation about the 0-eigenspace of a matrix.

Fact. Let A be an n× n matrix.

1. The number 0 is an eigenvalue of A if and only if A is not invertible.

2. In this case, the 0-eigenspace of A is Nul(A).

Proof. We know that 0 is an eigenvalue of A if and only if Nul(A− 0In) = Nul(A)
is nonzero, which is equivalent to the noninvertibility of A by the invertible matrix
theorem in Section 4.6. In this case, the 0-eigenspace is by definition Nul(A−0In) =
Nul(A).

Concretely, an eigenvector with eigenvalue 0 is a nonzero vector v such that
Av = 0v, i.e., such that Av = 0. These are exactly the nonzero vectors in the null
space of A.

6.1.3 The Invertible Matrix Theorem: Addenda

We now have two new ways of saying that a matrix is invertible, so we add them
to the invertible matrix theorem.

Invertible Matrix Theorem. Let A be an n× n matrix, and let T : Rn → Rn be the
matrix transformation T (x) = Ax. The following statements are equivalent:

https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=0,-1:-1,0&nomult
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1. A is invertible.

2. A has n pivots.

3. Nul(A) = {0}.

4. The columns of A are linearly independent.

5. The columns of A span Rn.

6. Ax = b has a unique solution for each b in Rn.

7. T is invertible.

8. T is one-to-one.

9. T is onto.

10. det(A) ̸= 0.

11. 0 is not an eigenvalue of A.

6.2 The Characteristic Polynomial

Objectives

1. Learn that the eigenvalues of a triangular matrix are the diagonal entries.

2. Find all eigenvalues of a matrix using the characteristic polynomial.

3. Learn some strategies for finding the zeros of a polynomial.

4. Recipe: the characteristic polynomial of a 2× 2 matrix.

5. Vocabulary: characteristic polynomial, trace.

In Section 6.1 we discussed how to decide whether a given number λ is an
eigenvalue of a matrix, and if so, how to find all of the associated eigenvectors.
In this section, we will give a method for computing all of the eigenvalues of a
matrix. This does not reduce to solving a system of linear equations: indeed, it
requires solving a nonlinear equation in one variable, namely, finding the roots of
the characteristic polynomial.

Definition. Let A be an n× n matrix. The characteristic polynomial of A is the
function f (λ) given by

f (λ) = det(A−λIn).
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We will see below that the characteristic polynomial is in fact a polynomial.
Finding the characterestic polynomial means computing the determinant of the
matrix A−λIn, whose entries contain the unknown λ.

Example. Find the characteristic polynomial of the matrix

A=
�

5 2
2 1

�

.

Solution. We have

f (λ) = det(A−λI2) = det
��

5 2
2 1

�

−
�

λ 0
0 λ

��

= det
�

5−λ 2
2 1−λ

�

= (5−λ)(1−λ)− 2 · 2= λ2 − 6λ+ 1.

Example. Find the characteristic polynomial of the matrix

A=





0 6 8
1
2 0 0
0 1

2 0



 .

Solution. We compute the determinant by expanding cofactors along the third
column:

f (λ) = det(A−λI3) = det





−λ 6 8
1
2 −λ 0
0 1

2 −λ





= 8
�

1
4
− 0 · −λ

�

−λ
�

λ2 − 6 ·
1
2

�

= −λ3 + 3λ+ 2.

The point of the characteristic polynomial is that we can use it to compute
eigenvalues.

Theorem (Eigenvalues are roots of the characteristic polynomial). Let A be an n×n
matrix, and let f (λ) = det(A−λIn) be its characteristic polynomial. Then a number
λ0 is an eigenvalue of A if and only if f (λ0) = 0.

Proof. By the invertible matrix theorem in Section 6.1, the matrix equation (A−
λ0In)x = 0 has a nontrivial solution if and only if det(A−λ0In) = 0. Therefore,

λ0 is an eigenvalue of A ⇐⇒ Ax = λ0 x has a nontrivial solution

⇐⇒ (A−λ0In)x = 0 has a nontrivial solution

⇐⇒ A−λ0In is not invertible

⇐⇒ det(A−λ0In) = 0

⇐⇒ f (λ0) = 0.
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Example (Finding eigenvalues). Find the eigenvalues and eigenvectors of the ma-
trix

A=
�

5 2
2 1

�

.

Solution. In the above example we computed the characteristic polynomial of A
to be f (λ) = λ2 − 6λ+ 1. We can solve the equation λ2 − 6λ+ 1 = 0 using the
quadratic formula:

λ=
6±
p

36− 4
2

= 3± 2
p

2.

Therefore, the eigenvalues are 3+ 2
p

2 and 3− 2
p

2.
To compute the eigenvectors, we solve the homogeneous system of equations

(A−λI2)x = 0 for each eigenvalue λ. When λ= 3+ 2
p

2, we have

A− (3+
p

2)I2 =

�

2− 2
p

2 2
2 −2− 2

p
2

�

R1=R1×(2+2
p

2)
−−−−−−−−−→

�

−4 4+ 4
p

2
2 −2− 2

p
2

�

R2=R2+R1/2−−−−−−−→
�

−4 4+ 4
p

2
0 0

�

R1=R1÷−4
−−−−−→

�

1 −1−
p

2
0 0

�

.

The parametric form of the general solution is x = (1+
p

2)y , so the (3+ 2
p

2)-
eigenspace is the line spanned by

�1+
p

2
1

�

. We compute in the same way that the

(3− 2
p

2)-eigenspace is the line spanned by
�1−
p

2
1

�

.

Use this link to view the online demo

The green line is the (3 − 2
p

2)-eigenspace, and the violet line is the (3 + 2
p

2)-
eigenspace.

Example (Finding eigenvalues). Find the eigenvalues and eigenvectors of the ma-
trix

A=





0 6 8
1
2 0 0
0 1

2 0



 .

Solution. In the above example we computed the characteristic polynomial of A
to be f (λ) = −λ3 + 3λ+ 2. We eyeball that f (2) = −8+ 3 · 2+ 2= 0. Thus λ− 2
divides f (λ); to find the other roots, we perform polynomial long division:

−λ3 + 3λ+ 2
λ− 2

= −λ2 − 2λ− 1= −(λ+ 1)2.

https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=5,2:2,1&nomult
https://en.wikipedia.org/wiki/Polynomial_long_division
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Therefore,
f (λ) = −(λ− 2)(λ+ 1)2,

so the only eigenvalues are λ= 2,−1.
We compute the 2-eigenspace by solving the homogeneous system (A−2I3)x =

0. We have

A− 2I3 =





−2 6 8
1
2 −2 0
0 1

2 −2





RREF
−−→





1 0 −16
0 1 −4
0 0 0



 .

The parametric form and parametric vector form of the solutions are:

(

x = 16z
y = 4z
z = z

−→





x
y
z



= z





16
4
1



 .

Therefore, the 2-eigenspace is the line

Span











16
4
1











.

We compute the−1-eigenspace by solving the homogeneous system (A+I3)x =
0. We have

A+ I3 =





1 6 8
1
2 1 0
0 1

2 1





RREF
−−→





1 0 −4
0 1 2
0 0 0



 .

The parametric form and parametric vector form of the solutions are:

( x = 4z
y = −2z
z = z

−→





x
y
z



= z





4
−2

1



 .

Therefore, the −1-eigenspace is the line

Span











4
−2

1











.

Use this link to view the online demo

The green line is the −1-eigenspace, and the violet line is the 2-eigenspace.

https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=0,6,8:1/2,0,0:0,1/2,0&nomult
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Form of the characteristic polynomial It is time that we justified the use of the
term “polynomial.” First we need some vocabulary.

Definition. The trace of a square matrix A is the number Tr(A) obtained by sum-
ming the diagonal entries of A:

Tr













a11 a12 · · · a1,n−1 a1n

a21 a22 · · · a2,n−1 a2n
...

...
. . .

...
...

an−1,1 an−1,2 · · · an−1,n−1 an−1,n

an1 an2 · · · an,n−1 ann













= a11 + a22 + · · ·+ ann.

Theorem. Let A be an n×n matrix, and let f (λ) = det(A−λIn) be its characteristic
polynomial. Then f (λ) is a polynomial of degree n. Moreover, f (λ) has the form

f (λ) = (−1)nλn + (−1)n−1 Tr(A)λn−1 + · · ·+ det(A).

In other words, the coefficient of λn−1 is ±Tr(A), and the constant term is det(A) (the
other coefficients are just numbers without names).

Proof. First we notice that

f (0) = det(A− 0In) = det(A),

so that the constant term is always det(A).
We will prove the rest of the theorem only for 2 × 2 matrices; the reader is

encouraged to complete the proof in general using cofactor expansions. We can
write a 2× 2 matrix as A=

�

a b
c d

�

; then

f (λ) = det(A−λI2) = det
�

a−λ b
c d −λ

�

= (a−λ)(d −λ)− bc

= λ2 − (a+ d)λ+ (ad − bc) = λ2 − Tr(A)λ+ det(A).

Recipe: The characteristic polynomial of a 2× 2 matrix. When n = 2, the
previous theorem tells us all of the coefficients of the characteristic polynomial:

f (λ) = λ2 − Tr(A)λ+ det(A).

This is generally the fastest way to compute the characteristic polynomial of a
2× 2 matrix.

Example. Find the characteristic polynomial of the matrix

A=
�

5 2
2 1

�

.



6.2. THE CHARACTERISTIC POLYNOMIAL 269

Solution. We have

f (λ) = λ2 − Tr(A)λ+ det(A) = λ2 − (5+ 1)λ+ (5 · 1− 2 · 2) = λ2 − 6λ+ 1,

as in the above example.

Remark. By the above theorem, the characteristic polynomial of an n× n matrix
is a polynomial of degree n. Since a polynomial of degree n has at most n roots,
this gives another proof of the fact that an n×n matrix has at most n eigenvalues.
See this important note in Section 6.1.

Eigenvalues of a triangular matrix It is easy to compute the determinant of an
upper- or lower-triangular matrix; this makes it easy to find its eigenvalues as well.

Corollary. If A is an upper- or lower-triangular matrix, then the eigenvalues of A are
its diagonal entries.

Proof. Suppose for simplicity that A is a 3× 3 upper-triangular matrix:

A=





a11 a12 a13

0 a22 a23

0 0 a33



 .

Its characteristic polynomial is

f (λ) = det(A−λI3) = det





a11 −λ a12 a13

0 a22 −λ a23

0 0 a33 −λ



 .

This is also an upper-triangular matrix, so the determinant is the product of the
diagonal entries:

f (λ) = (a11 −λ)(a22 −λ)(a33 −λ).

The zeros of this polynomial are exactly a11, a22, a33.

Example. Find the eigenvalues of the matrix

A=







1 7 2 4
0 1 3 11
0 0 π 101
0 0 0 0






.

Solution. The eigenvalues are the diagonal entries 1,π, 0. (The eigenvalue 1
occurs twice, but it counts as one eigenvalue; in Section 6.4 we will define the
notion of algebraic multiplicity of an eigenvalue.)
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Factoring the characteristic polynomial If A is an n× n matrix, then the char-
acteristic polynomial f (λ) has degree n by the above theorem. When n = 2, one
can use the quadratic formula to find the roots of f (λ). There exist algebraic for-
mulas for the roots of cubic and quartic polynomials, but these are generally too
cumbersome to apply by hand. Even worse, it is known that there is no algebraic
formula for the roots of a general polynomial of degree at least 5.

In practice, the roots of the characteristic polynomial are found numerically
by computer. That said, there do exist methods for finding roots by hand. For
instance, we have the following consequence of the rational root theorem (which
we also call the rational root theorem):

Rational Root Theorem. Suppose that A is an n × n matrix whose characteristic
polynomial f (λ) has integer (whole-number) entries. Then all rational roots of its
characteristic polynomial are integer divisors of det(A).

For example, if A has integer entries, then its characteristic polynomial has
integer coefficients. This gives us one way to find a root by hand, if A has an
eigenvalue that is a rational number. Once we have found one root, then we can
reduce the degree by polynomial long division.

Example. Find the eigenvalues of the matrix

A=





7 0 3
−3 2 −3
−3 0 −1



 .

Hint: one eigenvalue is an integer.

Solution. We compute the characteristic polynomial by expanding cofactors along
the first row:

f (λ) = det(A−λI3) = det





7−λ 0 3
−3 2−λ −3
−3 0 −1−λ





= (7−λ)(2−λ)(−1−λ) + 3 · 3(2−λ)
= −λ3 + 8λ2 − 14λ+ 4.

The determinant of A is the constant term f (0) = 4; its integer divisors are±1,±2,±4.
We check which are roots:

f (1) = −3 f (−1) = 27 f (2) = 0 f (−2) = 72 f (4) = 12 f (−4) = 252.

The only rational root of f (λ) is λ= 2. We divide by λ−2 using polynomial long
division:

−λ3 + 8λ2 − 14λ+ 4
λ− 2

= −λ2 + 6λ− 2.

https://en.wikipedia.org/wiki/Cubic_function#General_solution_to_the_cubic_equation_with_real_coefficients
https://en.wikipedia.org/wiki/Quartic_function#Solving_a_quartic_equation
https://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem
https://en.wikipedia.org/wiki/Abel%E2%80%93Ruffini_theorem
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Rational_root_theorem
https://en.wikipedia.org/wiki/Polynomial_long_division
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We can use the quadratic formula to find the roots of the quotient:

λ=
−6±

p
36− 4 · 2
−2

= 3±
p

7.

We have factored f completely:

f (λ) = −(λ− 2)
�

λ− (3+
p

7)
��

λ− (3−
p

7)
�

.

Therefore, the eigenvalues of A are 2, 3+
p

7, 3−
p

7.

In the above example, we could have expanded cofactors along the second
column to obtain

f (λ) = (2−λ)det
�

7−λ 3
−3 −1−λ

�

.

Since 2 − λ was the only nonzero entry in its column, this expression already
has the 2− λ term factored out: the rational root theorem was not needed. The
determinant in the above expression is the characteristic polynomial of the matrix
�

7 3
−3 −1

�

, so we can compute it using the trace and determinant:

f (λ) = (2−λ)
�

λ2 − (7− 1)λ+ (−7+ 9)
�

= (2−λ)(λ2 − 6λ+ 2).

Example. Find the eigenvalues of the matrix

A=





7 0 3
−3 2 −3

4 2 0



 .

Solution. We compute the characteristic polynomial by expanding cofactors along
the first row:

f (λ) = det(A−λI3) = det





7−λ 0 3
−3 2−λ −3

4 2 −λ





= (7−λ)
�

−λ(2−λ) + 6
�

+ 3
�

−6− 4(2−λ)
�

= −λ3 + 9λ2 − 8λ.

The constant term is zero, so A has determinant zero. We factor out λ, then eyeball
the roots of the quadratic factor:

f (λ) = −λ(λ2 − 9λ+ 8) = −λ(λ− 1)(λ− 8).

Therefore, the eigenvalues of A are 0,1, and 8.
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Finding Eigenvalues of a Matrix Larger than 2×2. Let A be an n×n matrix.
Here are some strategies for factoring its characteristic polynomial f (λ). First,
you must find one eigenvalue:

1. Do not multiply out the characteristic polynomial if it is already partially
factored! This happens if you expand cofactors along the second column
in this example.

2. If there is no constant term, you can factor out λ, as in this example.

3. If the matrix is triangular, the roots are the diagonal entries.

4. Guess one eigenvalue using the rational root theorem: if det(A) is an
integer, substitute all (positive and negative) divisors of det(A) into f (λ).

5. Find an eigenvalue using the geometry of the matrix. For instance, a
reflection has eigenvalues ±1.

After obtaining an eigenvalue λ1, use polynomial long division to compute
f (λ)/(λ − λ1). This polynomial has lower degree. If n = 3 then this is a
quadratic polynomial, to which you can apply the quadratic formula to find
the remaining roots.

6.3 Similarity

Objectives

1. Learn to interpret similar matrices geometrically.

2. Understand the relationship between the eigenvalues, eigenvectors, and char-
acteristic polynomials of similar matrices.

3. Recipe: compute Ax in terms of B, C for A= CBC−1.

4. Picture: the geometry of similar matrices.

5. Vocabulary: similarity.

Some matrices are easy to understand. For instance, a diagonal matrix

D =
�

2 0
0 1/2

�

https://en.wikipedia.org/wiki/Polynomial_long_division
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just scales the coordinates of a vector: D
�x

y

�

=
� 2x

y/2

�

. The purpose of most of the
rest of this chapter is to understand complicated-looking matrices by analyzing to
what extent they “behave like” simple matrices. For instance, the matrix

A=
1

10

�

11 6
9 14

�

has eigenvalues 2 and 1/2, with corresponding eigenvectors v1 =
�2/3

1

�

and v2 =
�−1

1

�

. Notice that

D(xe1 + ye2) = x De1 + yDe2 = 2xe1 −
1
2 ye2

A(x v1 + yv2) = xAv1 + yAv2 = 2x v1 −
1
2 yv2.

Using v1, v2 instead of the usual coordinates makes A “behave” like a diagonal
matrix.

Use this link to view the online demo

The matrices A and D behave similarly. Click “multiply” to multiply the colored points
by D on the left and A on the right. (We will see in Section 6.4 why the points follow
hyperbolic paths.)

The other case of particular importance will be matrices that “behave” like a
rotation matrix: indeed, this will be crucial for understanding Section 6.5 geomet-
rically. See this important note.

In this section, we study in detail the situation when two matrices behave sim-
ilarly with respect to different coordinate systems. In Section 6.4 and Section 6.5,
we will show how to use eigenvalues and eigenvectors to find a simpler matrix
that behaves like a given matrix.

6.3.1 Similar Matrices

We begin with the algebraic definition of similarity.

Definition. Two n × n matrices A and B are similar if there exists an invertible
n× n matrix C such that A= CBC−1.

Example. The matrices
�

−12 15
−10 13

�

and
�

3 0
0 −2

�

are similar because
�

−12 15
−10 13

�

=
�

−2 3
1 −1

��

3 0
0 −2

��

−2 3
1 −1

�−1

,

as the reader can verify.

https://ulrikbuchholtz.dk/ila/demos/dynamics2.html?mat=2,0:0,1/2&v1=2/3,1&v2=-1,1&y=1,5
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Example. The matrices
�

3 0
0 −2

�

and
�

1 0
0 1

�

are not similar. Indeed, the second matrix is the identity matrix I2, so if C is any
invertible 2× 2 matrix, then

C I2C−1 = CC−1 = I2 ̸=
�

3 0
0 −2

�

.

As in the above example, one can show that In is the only matrix that is similar
to In, and likewise for any scalar multiple of In.

Similarity is unrelated to row equivalence. Any invertible matrix is row equiv-
alent to In, but In is the only matrix similar to In. For instance,

�

2 1
0 2

�

and
�

1 0
0 1

�

are row equivalent but not similar.

As suggested by its name, similarity is what is called an equivalence relation.
This means that it satisfies the following properties.

Proposition. Let A, B, and C be n× n matrices.

1. Reflexivity: A is similar to itself.

2. Symmetry: if A is similar to B, then B is similar to A.

3. Transitivity: if A is similar to B and B is similar to C, then A is similar to C.

Proof.

1. Taking C = In = I−1
n , we have A= InAI−1

n .

2. Suppose that A = CBC−1. Multiplying both sides on the left by C−1 and on
the right by C gives

C−1AC = C−1(CBC−1)C = B.

Since (C−1)−1 = C , we have B = C−1A(C−1)−1, so that B is similar to A.

3. Suppose that A= DBD−1 and B = EC E−1. Subsituting for B and remember-
ing that (DE)−1 = E−1D−1, we have

A= D(EC E−1)D−1 = (DE)C(DE)−1,

which shows that A is similar to C .
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Example. The matrices
�

−12 15
−10 13

�

and
�

3 0
0 −2

�

are similar, as we saw in this example. Likewise, the matrices
�

−12 15
−10 13

�

and
�

−12 5
−30 13

�

are similar because
�

−12 5
−30 13

�

=
�

2 −1
2 1

��

−12 15
−10 13

��

2 −1
2 1

�−1

.

It follows that
�

−12 5
−30 13

�

and
�

3 0
0 −2

�

are similar to each other.

We conclude with an observation about similarity and powers of matrices.

Fact. Let A= CBC−1. Then for any n≥ 0, we have

An = CBnC−1.

Proof. First note that

A2 = AA= (CBC−1)(CBC−1) = CB(C−1C)BC−1 = CBInBC−1 = CB2C−1.

Next we have

A3 = A2A= (CB2C−1)(CBC−1) = CB2(C−1C)BC−1 = CB3C−1.

The pattern is clear.

Example. Compute A100, where

A=
�

5 13
−2 −5

�

=
�

−2 3
1 −1

��

0 −1
1 0

��

−2 3
1 −1

�−1

.

Solution. By the fact, we have

A100 =
�

−2 3
1 −1

��

0 −1
1 0

�100�−2 3
1 −1

�−1

.

The matrix
�

0 −1
1 0

�

is a counterclockwise rotation by 90◦. If we rotate by 90◦ four
times, then we end up where we started. Hence rotating by 90◦ one hundred times
is the identity transformation, so

A100 =
�

−2 3
1 −1

��

1 0
0 1

��

−2 3
1 −1

�−1

=
�

1 0
0 1

�

.
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6.3.2 Geometry of Similar Matrices

Similarity is a very interesting construction when viewed geometrically. We will
see that, roughly, similar matrices do the same thing in different coordinate systems.
The reader might want to review B-coordinates and nonstandard coordinate grids
in Section 3.5 and well as (B,C)-matrices in Section 4.7 before reading this sub-
section.

Recall that (by conditions 4 and 5 of the invertible matrix theorem in Sec-
tion 6.1) an n×n matrix C is invertible if and only if its columns v1, v2, . . . , vn form
a basis for Rn. This means we can speak of the C-coordinates of a vector in Rn,
where C is the basis of columns of C . Recall from Section 4.7 that this means

CC[x] = x and C−1 x = C[x].

Observation. If the linear map T : Rn→ Rn has as standard matrix A, and C is the
n× n matrix with columns given by the basis C, then the (C,C)-matrix of T is

B := C[T]C = C[Id]E E[T]E E[Id]C = C−1AC ,

so A= CBC−1.

In other words, two n×n-matrices A and B are similar if and only they represent
the same linear map T : Rn→ Rn, but expressed in different bases.

Let’s now illustrate this more concretely. Suppose that A= CBC−1. The above
observation gives us another way of computing Ax for a vector x in Rn. Recall that
CBC−1 x = C(B(C−1 x)), so that multiplying CBC−1 by x means first multiplying
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by C−1, then by B, then by C . See this example in Section 4.4.

Recipe: Computing Ax in terms of B. Suppose that A= CBC−1, where C is
an invertible matrix with columns v1, v2, . . . , vn, and let C = (v1, v2, . . . , vn) be
the corresponding basis for Rn. Let x be a vector in Rn. To compute Ax , one
does the following:

1. Multiply x by C−1, which changes to the C-coordinates: C[x] = C−1 x .

2. Multiply this by B: B C[x] = BC−1 x .

3. Interpreting this vector as a C-coordinate vector, we multiply it by C to
change back to the usual coordinates: Ax = CBC−1 x = CBC[x].

C-coordinates

C[x]

B C[x]

multiply by C−1

multiply by C

usual coordinates

xAx

To summarize: if A= CBC−1, then A and B do the same thing, only in different
coordinate systems.

The following example is the heart of this section.

Example. Consider the matrices

A=
�

1/2 3/2
3/2 1/2

�

B =
�

2 0
0 −1

�

C =
�

1 1
1 −1

�

.

One can verify that A= CBC−1: see this example in Section 6.4. Let v1 =
�1

1

�

and
v2 =

� 1
−1

�

, the columns of C , and let C = (v1, v2), a basis of R2.
The matrix B is diagonal: it scales the x-direction by a factor of 2 and the

y-direction by a factor of −1.
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e1

e2

Be1

Be2

B

To compute Ax , first we multiply by C−1 to find the C-coordinates of x , then
we multiply by B, then we multiply by C again. For instance, let x =

� 0
−2

�

.

1. We see from the C-coordinate grid below that x = −v1 + v2. Therefore,
C−1 x = C[x] =

�−1
1

�

.

2. Multiplying by B scales the coordinates: B C[x] =
�−2
−1

�

.

3. Interpreting
�−2
−1

�

as a C-coordinate vector, we multiply by C to get

Ax = C
�

−2
−1

�

= −2v1 − v2 =
�

−3
−1

�

.

Of course, this vector lies at (−2,−1) on the C-coordinate grid.

C-coordinates

C[x]

B C[x]

multiply by C−1

scale x by 2
scale y by −1

multiply by C

usual coordinates

x
Ax

Now let x = 1
2

� 5
−3

�

.

1. We see from the C-coordinate grid that x = 1
2 v1 + 2v2. Therefore, C−1 x =

C[x] =
�1/2

2

�

.
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2. Multiplying by B scales the coordinates: B C[x] =
� 1
−2

�

.

3. Interpreting
� 1
−2

�

as a C-coordinate vector, we multiply by C to get

Ax = C
�

1
−2

�

= v1 − 2v2 =
�

−1
3

�

.

This vector lies at (1,−2) on the C-coordinate grid.

C-coordinates

C[x]

B C[x]

multiply by C−1

scale x by 2
scale y by −1

multiply by C

usual coordinates

x

Ax

To summarize:

• B scales the e1-direction by 2 and the e2-direction by −1.

• A scales the v1-direction by 2 and the v2-direction by −1.
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e1

e2

Be1

Be2

v1

v2

Av1

Av2

B

A

C−1 C

Use this link to view the online demo

The geometric relationship between the similar matrices A and B acting on R2. Click
and drag the heads of x and C[x]. Study this picture until you can reliably predict
where the other three vectors will be after moving one of them: this is the essence of
the geometry of similar matrices.

Interactive: Another matrix similar to B. Consider the matrices

A′ =
1
5

�

−8 −9
6 13

�

B =
�

2 0
0 −1

�

C ′ =
1
2

�

−1 −3
2 1

�

.

Then A′ = C ′B(C ′)−1, as one can verify. Let v′1 =
1
2

�−1
2

�

and v′2 =
1
2

�−3
1

�

, the columns
of C ′, and let C′ = (v′1, v′2). Then A′ does the same thing as B, as in the previous
example, except A′ uses the C′-coordinate system. In other words:

• B scales the e1-direction by 2 and the e2-direction by −1.

• A′ scales the v′1-direction by 2 and the v′2-direction by −1.

https://ulrikbuchholtz.dk/ila/demos/similarity.html?B=2,0:0,-1&C=1,1:1,-1&closed
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e1

e2

Be1

Be2

v′1
v′2

A′v′1

A′v′2

B

A′

(C ′)−1 C ′

Use this link to view the online demo

The geometric relationship between the similar matrices A′ and B acting on R2. Click
and drag the heads of x and C′[x].

Example (A matrix similar to a rotation matrix). Consider the matrices

A=
1
6

�

7 −17
5 −7

�

B =
�

0 −1
1 0

�

C =
�

2 −1/2
1 1/2

�

.

One can verify that A= CBC−1. Let v1 =
�2

1

�

and v2 =
1
2

�−1
1

�

, the columns of C , and
let C = (v1, v2), a basis of R2.

The matrix B rotates the plane counterclockwise by 90◦.

https://ulrikbuchholtz.dk/ila/demos/similarity.html?B=2,0:0,-1&C=-1/2,-3/2:1,1/2&closed
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e1

e2 Be1

Be2

B

To compute Ax , first we multiply by C−1 to find the C-coordinates of x , then
we multiply by B, then we multiply by C again. For instance, let x = 3

2

�1
1

�

.

1. We see from the C-coordinate grid below that x = v1+v2. Therefore, C−1 x =
C[x] =

�1
1

�

.

2. Multiplying by B rotates by 90◦: B C[x] =
�−1

1

�

.

3. Interpreting
�−1

1

�

as a C-coordinate vector, we multiply by C to get

Ax = C
�

−1
1

�

= −v1 + v2 =
1
2

�

−5
−1

�

.

Of course, this vector lies at (−1,1) on the C-coordinate grid.

C-coordinates

C[x]B C[x]
multiply by C−1

rotate by 90◦

multiply by C

usual coordinates

x

Ax

Now let x = 1
2

�−1
−2

�

.

1. We see from the C-coordinate grid that x = −1
2 v1 − v2. Therefore, C−1 x =

[x]C =
�−1/2
−1

�

.

2. Multiplying by B rotates by 90◦: B[x]C =
� 1
−1/2

�

.
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3. Interpreting
� 1
−1/2

�

as a C-coordinate vector, we multiply by C to get

Ax = C
�

1
−1/2

�

= v1 −
1
2

v2 =
1
4

�

9
3

�

.

This vector lies at (1,−1
2) on the C-coordinate grid.

C-coordinates

C[x]

B C[x]

multiply by C−1

rotate by 90◦

multiply by C

usual coordinates

x

Ax

To summarize:

• B rotates counterclockwise around the circle centred at the origin and pass-
ing through e1 and e2.

• A rotates counterclockwise around the ellipse centred at the origin and pass-
ing through v1 and v2.
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e1

e2 Be1

Be2

v1

v2
Av1

Av2

B

A

C−1 C

Use this link to view the online demo

The geometric relationship between the similar matrices A and B acting on R2. Click
and drag the heads of x and [x]C.

https://ulrikbuchholtz.dk/ila/demos/similarity.html?B=0,-1:1,0&C=2,-1/2:1,1/2&snap=off
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To summarize and generalize the previous example:

A Matrix Similar to a Rotation Matrix. Let

B =
�

cosθ − sinθ
sinθ cosθ

�

C =





| |
v1 v2

| |



 A= CBC−1,

where C is assumed invertible. Then:

• B rotates the plane by an angle of θ around the circle centred at the
origin and passing through e1 and e2, in the direction from e1 to e2.

• A rotates the plane by an angle of θ around the ellipse centred at the
origin and passing through v1 and v2, in the direction from v1 to v2.

e1

e2 Be1

Be2

v1

v2
Av1

Av2

B

A

C−1 C
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Interactive: Similar 3× 3 matrices. Consider the matrices

A=





−1 0 0
−1 0 2
−1 1 1



 B =





−1 0 0
0 −1 0
0 0 2



 C =





−1 1 0
1 1 1
−1 0 1



 .

Then A = CBC−1, as one can verify. Let v1, v2, v3 be the columns of C , and let
C = (v1, v2, v3), a basis of R3. Then A does the same thing as B, except A uses the
C-coordinate system. In other words:

• B scales the e1, e2-plane by −1 and the e3-direction by 2.

• A scales the v1, v2-plane by −1 and the v3-direction by 2.

Use this link to view the online demo

The geometric relationship between the similar matrices A and B acting on R3. Click
and drag the heads of x and C[x].

6.3.3 Eigenvalues of Similar Matrices

Since similar matrices behave in the same way with respect to different coordinate
systems, we should expect their eigenvalues and eigenvectors to be closely related.

Fact. Similar matrices have the same characteristic polynomial.

Proof. Suppose that A= CBC−1, where A, B, C are n× n matrices. We calculate

A−λIn = CBC−1 −λCC−1 = CBC−1 − CλC−1

= CBC−1 − CλInC−1 = C(B −λIn)C
−1.

Therefore,

det(A−λIn) = det(C(B−λIn)C
−1) = det(C)det(B−λIn)det(C)−1 = det(B−λIn).

Here we have used the multiplicativity property in Section 5.1 and its corollary in
Section 5.1.

Since the eigenvalues of a matrix are the roots of its characteristic polynomial,
we have shown:

Similar matrices have the same eigenvalues.

By this theorem in Section 6.2, similar matrices also have the same trace and
determinant. Both of these observations also follow from the fact that similar ma-
trices represent the same linear endomorphism considered with respect to different
bases, and the determinant, trace, and characteristic polynomial don’t depend on
the choice of basis.

https://ulrikbuchholtz.dk/ila/demos/similarity.html?B=-1,0,0:0,-1,0:0,0,2&C=-1,1,0:1,1,1:-1,0,1&closed
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Note. The converse of the fact is false. Indeed, the matrices

�

1 1
0 1

�

and
�

1 0
0 1

�

both have characteristic polynomial f (λ) = (λ − 1)2, but they are not similar,
because the only matrix that is similar to I2 is I2 itself.

Given that similar matrices have the same eigenvalues, one might guess that
they have the same eigenvectors as well. Upon reflection, this is not what one
should expect: indeed, the eigenvectors should only match up after changing from
one coordinate system to another. This is the content of the next fact, remembering
that C and C−1 change between the usual coordinates and the C-coordinates.

Fact. Suppose that A= CBC−1. Then

v is an eigenvector of A =⇒ C−1v is an eigenvector of B
v is an eigenvector of B =⇒ C v is an eigenvector of A.

The eigenvalues of v / C−1v or v / C v are the same.

Proof. Suppose that v is an eigenvector of A with eigenvalue λ, so that Av = λv.
Then

B(C−1v) = C−1(CBC−1v) = C−1(Av) = C−1λv = λ(C−1v),

so that C−1v is an eigenvector of B with eigenvalue λ. Likewise if v is an eigen-
vector of B with eigenvalue λ, then Bv = λv, and we have

A(C v) = (CBC−1)C v = CBv = C(λv) = λ(C v),

so that C v is an eigenvalue of A with eigenvalue λ.

If A= CBC−1, then C−1 takes the λ-eigenspace of A to the λ-eigenspace of B,
and C takes the λ-eigenspace of B to the λ-eigenspace of A.

Example. We continue with the above example: let

A=
�

1/2 3/2
3/2 1/2

�

B =
�

2 0
0 −1

�

C =
�

1 1
1 −1

�

,

so A= CBC−1. Let v1 =
�1

1

�

and v2 =
� 1
−1

�

, the columns of C . Recall that:

• B scales the e1-direction by 2 and the e2-direction by −1.

• A scales the v1-direction by 2 and the v2-direction by −1.
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This means that the x-axis is the 2-eigenspace of B, and the y-axis is the −1-
eigenspace of B; likewise, the “v1-axis” is the 2-eigenspace of A, and the “v2-axis”
is the −1-eigenspace of A. This is consistent with the fact, as multiplication by C
changes e1 into Ce1 = v1 and e2 into Ce2 = v2.

2-eigenspace
−

1-
ei

ge
ns

pa
ce

2-
eig

en
sp

ac
e

−1-eigenspace

C

Use this link to view the online demo

The eigenspaces of A are the lines through v1 and v2. These are the images under C
of the coordinate axes, which are the eigenspaces of B.

Interactive: Another matrix similar to B. Continuing with this example, let

A′ =
1
5

�

−8 −9
6 13

�

B =
�

2 0
0 −1

�

C ′ =
1
2

�

−1 −3
2 1

�

,

so A′ = C ′B(C ′)−1. Let v′1 =
1
2

�−1
2

�

and v′2 =
1
2

�−3
1

�

, the columns of C ′. Then:

• B scales the e1-direction by 2 and the e2-direction by −1.

• A′ scales the v′1-direction by 2 and the v′2-direction by −1.

As before, the x-axis is the 2-eigenspace of B, and the y-axis is the −1-eigenspace
of B; likewise, the “v′1-axis” is the 2-eigenspace of A′, and the “v′2-axis” is the −1-
eigenspace of A′. This is consistent with the fact, as multiplication by C ′ changes
e1 into C ′e1 = v′1 and e2 into C ′e2 = v′2.

2-eigenspace

−
1-

ei
ge

ns
pa

ce
2-eigenspace

−1-eigenspace

C

https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=1/2,3/2:3/2,1/2&nomult
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Use this link to view the online demo

The eigenspaces of A′ are the lines through v′1 and v′2. These are the images under C ′

of the coordinate axes, which are the eigenspaces of B.

Interactive: Similar 3× 3 matrices. Continuing with this example, let

A=





−1 0 0
−1 0 2
−1 1 1



 B =





−1 0 0
0 −1 0
0 0 2



 C =





−1 1 0
1 1 1
−1 0 1



 ,

so A= CBC−1. Let v1, v2, v3 be the columns of C . Then:

• B scales the e1, e2-plane by −1 and the e3-direction by 2.

• A scales the v1, v2-plane by −1 and the v3-direction by 2.

In other words, the x y-plane is the −1-eigenspace of B, and the z-axis is the 2-
eigenspace of B; likewise, the “v1, v2-plane” is the −1-eigenspace of A, and the
“v3-axis” is the 2-eigenspace of A. This is consistent with the fact, as multiplication
by C changes e1 into Ce1 = v1, e2 into Ce2 = v2, and e3 into Ce3 = v3.

Use this link to view the online demo

The −1-eigenspace of A is the green plane, and the 2-eigenspace of A is the violet line.
These are the images under C of the x y-plane and the z-axis, respectively, which are
the eigenspaces of B.

6.4 Diagonalization

Objectives

1. Learn two main criteria for a matrix to be diagonalizable.

2. Develop a library of examples of matrices that are and are not diagonalizable.

3. Understand what diagonalizability and multiplicity have to say about simi-
larity.

4. Recipes: diagonalize a matrix, quickly compute powers of a matrix by diag-
onalization.

https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=-8/5,-9/5:6/5,13/5&nomult
https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=-1,0,0:-1,0,2:-1,1,1&nomult
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5. Pictures: the geometry of diagonal matrices, why a shear is not diagonaliz-
able.

6. Theorem: the diagonalization theorem (two variants).

7. Vocabulary: diagonalizable, algebraic multiplicity, geometric multiplic-
ity.

Diagonal matrices are the easiest kind of matrices to understand: they just
scale the coordinate directions by their diagonal entries. In Section 6.3, we saw
that similar matrices behave in the same way, with respect to different coordinate
systems. Therefore, if a matrix is similar to a diagonal matrix, it is also relatively
easy to understand. This section is devoted to the question: “When is a matrix
similar to a diagonal matrix?”

6.4.1 Diagonalizability

Before answering the above question, first we give it a name.

Definition. An n×n matrix A is diagonalizable if it is similar to a diagonal matrix:
that is, if there exists an invertible n× n matrix C and a diagonal matrix D such
that

A= C DC−1.

Example. Any diagonal matrix is D is diagonalizable because it is similar to itself.
For instance,





1 0 0
0 2 0
0 0 3



= I3





1 0 0
0 2 0
0 0 3



 I−1
3 .

Example. Most of the examples in Section 6.3 involve diagonalizable matrices:

�

−12 15
−10 13

�

is diagonalizable
because it equals

�

−2 3
1 −1

��

3 0
0 −2

��

−2 3
1 −1

�−1

�

1/2 3/2
3/2 1/2

�

is diagonalizable
because it equals

�

1 1
1 −1

��

2 0
0 −1

��

1 1
1 −1

�−1

1
5

�

−8 −9
6 13

�

is diagonalizable
because it equals

1
2

�

−1 −3
2 1

��

2 0
0 −1

��

1
2

�

−1 −3
2 1

��−1





−1 0 0
−1 0 2
−1 1 1





is diagonalizable
because it equals





−1 1 0
1 1 1
−1 0 1









−1 0 0
0 −1 0
0 0 2









−1 1 0
1 1 1
−1 0 1





−1

.

Example. If a matrix A is diagonalizable, and if B is similar to A, then B is diago-
nalizable as well by this proposition in Section 6.3.
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Powers of diagonalizable matrices Multiplying diagonal matrices together just
multiplies their diagonal entries:





x1 0 0
0 x2 0
0 0 x3









y1 0 0
0 y2 0
0 0 y3



=





x1 y1 0 0
0 x2 y2 0
0 0 x3 y3



 .

Therefore, it is easy to take powers of a diagonal matrix:




x 0 0
0 y 0
0 0 z





n

=





xn 0 0
0 yn 0
0 0 zn



 .

By this fact in Section 6.3, if A = C DC−1 then An = C DnC−1, so it is also easy to
take powers of diagonalizable matrices. This will be very important in applications
to discrete dynamical systems in Section 7.3 and Section 7.4.

Recipe: Compute powers of a diagonalizable matrix. If A= C DC−1, where
D is a diagonal matrix, then An = C DnC−1:

A= C





x 0 0
0 y 0
0 0 z



C−1 =⇒ An = C





xn 0 0
0 yn 0
0 0 zn



C−1.

The always holds for n≥ 0 and for all n, including n= −1 (giving the inverse
of A), when all the diagonal entries of D are non-zero.

Example. Let

A=
�

1/2 3/2
3/2 1/2

�

=
�

1 1
1 −1

��

2 0
0 −1

��

1 1
1 −1

�−1

.

Find a formula for An in which the entries are functions of n, where n is any whole
number.

Solution. We have

An =
�

1 1
1 −1

��

2 0
0 −1

�n�
1 1
1 −1

�−1

=
�

1 1
1 −1

��

2n 0
0 (−1)n

�

1
−2

�

−1 −1
−1 1

�

=
�

2n (−1)n

2n (−1)n+1

�

1
2

�

1 1
1 −1

�

=
1
2

�

2n + (−1)n 2n + (−1)n+1

2n + (−1)n+1 2n + (−1)n

�

,

where we used (−1)n+2 = (−1)2(−1)n = (−1)n.
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A fundamental question about a square matrix is whether or not it is diagonal-
izable. The following is the primary criterion for diagonalizability. It shows that
diagonalizability is an eigenvalue problem.

Diagonalization Theorem. An n× n matrix A is diagonalizable if and only if A has
n linearly independent eigenvectors.

In this case, A= C DC−1 for

C =





| | |
v1 v2 · · · vn

| | |



 D =









λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn









,

where v1, v2, . . . , vn are linearly independent eigenvectors, and λ1,λ2, . . . ,λn are the
corresponding eigenvalues, in the same order.

Proof. First suppose that A has n linearly independent eigenvectors v1, v2, . . . , vn,
with eigenvalues λ1,λ2, . . . ,λn. Define C as above, so C is invertible by the invert-
ible matrix theorem in Section 6.1. Let D = C−1AC , so A = C DC−1. Multiplying
by standard coordinate vectors picks out the columns of C: we have Cei = vi, so
ei = C−1vi. We multiply by the standard coordinate vectors to find the columns of
D:

Dei = C−1ACei = C−1Avi = C−1λi vi = λiC
−1vi = λiei.

Therefore, the columns of D are multiples of the standard coordinate vectors:

D =













λ1 0 · · · 0 0
0 λ2 · · · 0 0
...

...
. . .

...
...

0 0 · · · λn−1 0
0 0 · · · 0 λn













.

Now suppose that A = C DC−1, where C has columns v1, v2, . . . , vn, and D is
diagonal with diagonal entries λ1,λ2, . . . ,λn. Since C is invertible, its columns
are linearly independent. We have to show that vi is an eigenvector of A with
eigenvalue λi. We know that the standard coordinate vector ei is an eigenvector
of D with eigenvalue λi, so:

Avi = C DC−1vi = C Dei = Cλiei = λiCei = λi vi.

By this fact in Section 6.1, if an n × n matrix A has n distinct eigenvalues
λ1,λ2, . . . ,λn, then a choice of corresponding eigenvectors v1, v2, . . . , vn is auto-
matically linearly independent.

An n× n matrix with n distinct eigenvalues is diagonalizable.
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Easy Example. Apply the diagonalization theorem to the matrix

A=





1 0 0
0 2 0
0 0 3



 .

Solution. This diagonal matrix is in particular upper-triangular, so its eigenval-
ues are the diagonal entries 1,2, 3. The standard coordinate vectors are eigenvec-
tors of a diagonal matrix:





1 0 0
0 2 0
0 0 3









1
0
0



= 1 ·





1
0
0









1 0 0
0 2 0
0 0 3









0
1
0



= 2 ·





0
1
0









1 0 0
0 2 0
0 0 3









0
0
1



= 3 ·





0
0
1



 .

Therefore, the diagonalization theorem says that A= C DC−1, where the columns
of C are the standard coordinate vectors, and the D is the diagonal matrix with
entries 1,2, 3:





1 0 0
0 2 0
0 0 3



=





1 0 0
0 1 0
0 0 1









1 0 0
0 2 0
0 0 3









1 0 0
0 1 0
0 0 1





−1

.

This just tells us that A is similar to itself.
Actually, the diagonalization theorem is not completely trivial even for diagonal

matrices. If we put our eigenvalues in the order 3,2, 1, then the corresponding
eigenvectors are e3, e2, e1, so we also have that A = C ′D′(C ′)−1, where C ′ is the
matrix with columns e3, e2, e1, and D′ is the diagonal matrix with entries 3,2, 1:





1 0 0
0 2 0
0 0 3



=





0 0 1
0 1 0
1 0 0









3 0 0
0 2 0
0 0 1









0 0 1
0 1 0
1 0 0





−1

.

In particular, the matrices




1 0 0
0 2 0
0 0 3



 and





3 0 0
0 2 0
0 0 1





are similar to each other.

Non-Uniqueness of Diagonalization. We saw in the above example that changing
the order of the eigenvalues and eigenvectors produces a different diagonalization
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of the same matrix. There are generally many different ways to diagonalize a
matrix, corresponding to different orderings of the eigenvalues of that matrix. The
important thing is that the eigenvalues and eigenvectors have to be listed in the
same order.

A=





| | |
v1 v2 v3

| | |









λ1 0 0
0 λ2 0
0 0 λ3









| | |
v1 v2 v3

| | |





−1

=





| | |
v3 v2 v1

| | |









λ3 0 0
0 λ2 0
0 0 λ1









| | |
v3 v2 v1

| | |





−1

.

There are other ways of finding different diagonalizations of the same matrix.
For instance, you can scale one of the eigenvectors by a constant c:

A=





| | |
v1 v2 v3

| | |









λ1 0 0
0 λ2 0
0 0 λ3









| | |
v1 v2 v3

| | |





−1

=





| | |
cv1 v2 v3

| | |









λ1 0 0
0 λ2 0
0 0 λ3









| | |
cv1 v2 v3

| | |





−1

,

you can find a different basis entirely for an eigenspace of dimension at least 2,
etc.

Example (A diagonalizable 2× 2 matrix). Diagonalize the matrix

A=
�

1/2 3/2
3/2 1/2

�

.

Solution. We need to find the eigenvalues and eigenvectors of A. First we com-
pute the characteristic polynomial:

f (λ) = λ2 − Tr(A)λ+ det(A) = λ2 −λ− 2= (λ+ 1)(λ− 2).

Therefore, the eigenvalues are −1 and 2. We need to compute eigenvectors for
each eigenvalue. We start with λ1 = −1:

(A+ 1I2)v = 0 ⇐⇒
�

3/2 3/2
3/2 3/2

�

v = 0
RREF
−−→

�

1 1
0 0

�

v = 0.

The parametric form is x = −y , so v1 =
�−1

1

�

is an eigenvector with eigenvalue λ1.
Now we find an eigenvector with eigenvalue λ2 = 2:

(A− 2I2)v = 0 ⇐⇒
�

−3/2 3/2
3/2 −3/2

�

v = 0
RREF
−−→

�

1 −1
0 0

�

v = 0.
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The parametric form is x = y , so v2 =
�1

1

�

is an eigenvector with eigenvalue 2.
The eigenvectors v1, v2 are linearly independent, so the diagonalization theo-

rem says that

A= C DC−1 for C =
�

−1 1
1 1

�

D =
�

−1 0
0 2

�

.

Alternatively, if we choose 2 as our first eigenvalue, then

A= C ′D′(C ′)−1 for C ′ =
�

1 −1
1 1

�

D′ =
�

2 0
0 −1

�

.

Use this link to view the online demo

The green line is the −1-eigenspace of A, and the violet line is the 2-eigenspace. There
are two linearly independent (noncollinear) eigenvectors visible in the picture: choose
any nonzero vector on the green line, and any nonzero vector on the violet line.

Example (A diagonalizable 2×2 matrix with a zero eigenvector). Diagonalize the
matrix

A=
�

2/3 −4/3
−2/3 4/3

�

.

Solution. We need to find the eigenvalues and eigenvectors of A. First we com-
pute the characteristic polynomial:

f (λ) = λ2 − Tr(A)λ+ det(A) = λ2 − 2λ= λ(λ− 2).

Therefore, the eigenvalues are 0 and 2. We need to compute eigenvectors for each
eigenvalue. We start with λ1 = 0:

(A− 0I2)v = 0 ⇐⇒
�

2/3 −4/3
−2/3 4/3

�

v = 0
RREF
−−→

�

1 −2
0 0

�

v = 0.

The parametric form is x = 2y , so v1 =
�2

1

�

is an eigenvector with eigenvalue λ1.
Now we find an eigenvector with eigenvalue λ2 = 2:

(A− 2I2)v = 0 ⇐⇒
�

−4/3 −4/3
−2/3 −2/3

�

v = 0
RREF
−−→

�

1 1
0 0

�

v = 0.

The parametric form is x = −y , so v2 =
� 1
−1

�

is an eigenvector with eigenvalue 2.
The eigenvectors v1, v2 are linearly independent, so the diagonalization theo-

rem says that

A= C DC−1 for C =
�

2 1
1 −1

�

D =
�

0 0
0 2

�

.

Alternatively, if we choose 2 as our first eigenvalue, then

A= C ′D′(C ′)−1 for C ′ =
�

1 2
−1 1

�

D′ =
�

2 0
0 0

�

.

https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=1/2,3/2:3/2,1/2&nomult
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In the above example, the (non-invertible) matrix A = 1
3

�

2 −4
−2 4

�

is similar to
the diagonal matrix D =

�

0 0
0 2

�

. Since A is not invertible, zero is an eigenvalue by
the invertible matrix theorem, so one of the diagonal entries of D is necessarily
zero. Also see this example below.

Example (A diagonalizable 3× 3 matrix). Diagonalize the matrix

A=





4 −3 0
2 −1 0
1 −1 1



 .

Solution. We need to find the eigenvalues and eigenvectors of A. First we com-
pute the characteristic polynomial by expanding cofactors along the third column:

f (λ) = det(A−λI3) = (1−λ)det
��

4 −3
2 −1

�

−λI2

�

= (1−λ)(λ2 − 3λ+ 2) = −(λ− 1)2(λ− 2).

Therefore, the eigenvalues are 1 and 2. We need to compute eigenvectors for each
eigenvalue. We start with λ1 = 1:

(A− I3)v = 0 ⇐⇒





3 −3 0
2 −2 0
1 −1 0



 v = 0
RREF
−−→





1 −1 0
0 0 0
0 0 0



 v = 0.

The parametric vector form is

¨ x = y
y = y
z = z

=⇒





x
y
z



= y





1
1
0



+ z





0
0
1



 .

Hence a basis for the 1-eigenspace is

B1 =
�

v1, v2

	

where v1 =





1
1
0



 , v2 =





0
0
1



 .

Now we compute the eigenspace for λ2 = 2:

(A− 2I3)v = 0 ⇐⇒





2 −3 0
2 −3 0
1 −1 −1



 v = 0
RREF
−−→





1 0 −3
0 1 −2
0 0 0



 v = 0

The parametric form is x = 3z, y = 2z, so an eigenvector with eigenvalue 2 is

v3 =





3
2
1



 .
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The eigenvectors v1, v2, v3 are linearly independent: v1, v2 form a basis for the
1-eigenspace, and v3 is not contained in the 1-eigenspace because its eigenvalue
is 2. Therefore, the diagonalization theorem says that

A= C DC−1 for C =





1 0 3
1 0 2
0 1 1



 D =





1 0 0
0 1 0
0 0 2



 .

Use this link to view the online demo

The green plane is the 1-eigenspace of A, and the violet line is the 2-eigenspace. There
are three linearly independent eigenvectors visible in the picture: choose any two
noncollinear vectors on the green plane, and any nonzero vector on the violet line.

Here is the procedure we used in the above examples.

Recipe: Diagonalization. Let A be an n× n matrix. To diagonalize A:

1. Find the eigenvalues of A using the characteristic polynomial.

2. For each eigenvalue λ of A, compute a basis Bλ for the λ-eigenspace.

3. If there are fewer than n total vectors in all of the eigenspace bases Bλ,
then the matrix is not diagonalizable.

4. Otherwise, the n vectors v1, v2, . . . , vn in the eigenspace bases are linearly
independent, and A= C DC−1 for

C =





| | |
v1 v2 · · · vn

| | |



 and D =









λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn









,

where λi is the eigenvalue for vi.

We will justify the linear independence assertion in part 4 in the proof of this
theorem below.

Example (A shear is not diagonalizable). Let

A=
�

1 1
0 1

�

,

so T (x) = Ax is a shear. The characteristic polynomial of A is f (λ) = (λ− 1)2, so
the only eigenvalue of A is 1. We compute the 1-eigenspace:

(A− I2)v = 0 ⇐⇒
�

0 1
0 0

��

x
y

�

= 0 ⇐⇒ y = 0.

https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=4,-3,0:2,-1,0:1,-1,1&nomult


298 CHAPTER 6. EIGENVALUES AND EIGENVECTORS

In other words, the 1-eigenspace is exactly the x-axis, so all of the eigenvectors
of A lie on the x-axis. It follows that A does not admit two linearly independent
eigenvectors, so by the diagonalization theorem, it is not diagonalizable.

In this example in Section 6.1, we studied the eigenvalues of a shear geomet-
rically; we reproduce the interactive demo here.

Use this link to view the online demo

All eigenvectors of a shear lie on the x-axis.

Example (A projection is diagonalizable). Let L be a line through the origin in
R2, and define T : R2 → R2 to be the transformation that sends a vector x to the
closest point on L to x , as in the picture below.

L

x

T (x)

This is an example of an orthogonal projection. We will see in Section 8.3 that T
is a linear transformation; let A be the matrix for T . Any vector on L is not moved
by T because it is the closest point on L to itself: hence it is an eigenvector of A
with eigenvalue 1. Let L⊥ be the line perpendicular to L and passing through the
origin. Any vector x on L⊥ is closest to the zero vector on L, so a (nonzero) such
vector is an eigenvector of A with eigenvalue 0. (See this example in Section 6.1
for a special case.) Since A has two distinct eigenvalues, it is diagonalizable; in
fact, we know from the diagonalization theorem that A is similar to the matrix
�

1 0
0 0

�

.
Note that we never had to do any algebra! We know that A is diagonalizable

for geometric reasons.

Use this link to view the online demo

The line L (violet) is the 1-eigenspace of A, and L⊥ (green) is the 0-eigenspace. Since
there are linearly independent eigenvectors, we know that A is diagonalizable.

Example (A non-diagonalizable 3× 3 matrix). Let

A=





1 1 0
0 1 0
0 0 2



 .

https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=1,1:0,1&nomult
https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=25/26,5/26:5/26,1/26&nomult
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The characteristic polynomial of A is f (λ) = −(λ− 1)2(λ− 2), so the eigenvalues
of A are 1 and 2. We compute the 1-eigenspace:

(A− I3)v = 0 ⇐⇒





0 1 0
0 0 0
0 0 2









x
y
z



= 0 ⇐⇒ y = z = 0.

In other words, the 1-eigenspace is the x-axis. Similarly,

(A− 2I3)v = 0 ⇐⇒





−1 1 0
0 −1 0
0 0 0









x
y
z



= 0 ⇐⇒ x = y = 0,

so the 2-eigenspace is the z-axis. In particular, all eigenvectors of A lie on the xz-
plane, so there do not exist three linearly independent eigenvectors of A. By the
diagonalization theorem, the matrix A is not diagonalizable.

Notice that A contains a 2× 2 block on its diagonal that looks like a shear:

A=





1 1 0
0 1 0
0 0 2



 .

This makes one suspect that such a matrix is not diagonalizable.

Use this link to view the online demo

All eigenvectors of A lie on the x- and z-axes.

Example (A rotation matrix). Let

A=
�

0 −1
1 0

�

,

so T (x) = Ax is the linear transformation that rotates counterclockwise by 90◦.
We saw in this example in Section 6.1 that A does not have any eigenvectors at all.
It follows that A is not diagonalizable.

Use this link to view the online demo

This rotation matrix has no eigenvectors.

The characteristic polynomial of A is f (λ) = λ2 + 1, which of course does
not have any real roots. If we allow complex numbers, however, then f has two
roots, namely, ±i, where i =

p
−1. Hence the matrix is diagonalizable if we allow

ourselves to use complex numbers. We will treat this topic in detail in Section 6.5.

https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=1,1,0:0,1,0:0,0,2&nomult
https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=0,-1:1,0&nospace
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The following point is often a source of confusion.

Diagonalizability has nothing to do with invertibility. Of the following ma-
trices, the first is diagonalizable and invertible, the second is diagonalizable
but not invertible, the third is invertible but not diagonalizable, and the fourth
is neither invertible nor diagonalizable, as the reader can verify:

�

1 0
0 1

� �

1 0
0 0

� �

1 1
0 1

� �

0 1
0 0

�

.

Remark (Non-diagonalizable 2×2 matrices with an eigenvalue). As in the above
example, one can check that the matrix

Aλ =
�

λ 1
0 λ

�

is not diagonalizable for any number λ. We claim that any non-diagonalizable
2×2 matrix B with a real eigenvalue λ is similar to Aλ. Therefore, up to similarity,
these are the only such examples.

To prove this, let B be such a matrix. Let v1 be an eigenvector with eigenvalue
λ, and let v2 be any vector in R2 that is not collinear with v1, so that {v1, v2} forms
a basis for R2. Let C be the matrix with columns v1, v2, and consider A= C−1BC .
We have Ce1 = v1 and Ce2 = v2, so C−1v1 = e1 and C−1v2 = e2. We can compute
the first column of A as follows:

Ae1 = C−1BCe1 = C−1Bv1 = C−1λv1 = λC−1v1 = λe1.

Therefore, A has the form

A=
�

λ b
0 d

�

.

Since A is similar to B, it also has only one eigenvalue λ; since A is upper-triangular,
this implies d = λ, so

A=
�

λ b
0 λ

�

.

As B is not diagonalizable, we know A is not diagonal (B is similar to A), so b ̸= 0.
Now we observe that

�

1/b 0
0 1

��

λ b
0 λ

��

1/b 0
0 1

�−1

=
�

λ/b 1
0 λ

��

b 0
0 1

�

=
�

λ 1
0 λ

�

= Aλ.

We have shown that B is similar to A, which is similar to Aλ, so B is similar to Aλ
by the transitivity property of similar matrices.
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6.4.2 The Geometry of Diagonalizable Matrices

A diagonal matrix is easy to understand geometrically, as it just scales the coordi-
nate axes:





1 0 0
0 2 0
0 0 3









1
0
0



= 1 ·





1
0
0









1 0 0
0 2 0
0 0 3









0
1
0



= 2 ·





0
1
0









1 0 0
0 2 0
0 0 3









0
0
1



= 3 ·





0
0
1



 .

Therefore, we know from Section 6.3 that a diagonalizable matrix simply scales
the “axes” with respect to a different coordinate system. Indeed, if v1, v2, . . . , vn

are linearly independent eigenvectors of an n × n matrix A, then A scales the vi-
direction by the eigenvalue λi.

In the following examples, we visualize the action of a diagonalizable matrix
A in terms of its dynamics. In other words, we start with a collection of vectors
(drawn as points), and we see where they move when we multiply them by A
repeatedly.

Example (Eigenvalues |λ1|> 1, |λ2|< 1). Describe how the matrix

A=
1

10

�

11 6
9 14

�

acts on the plane.

Solution. First we diagonalize A. The characteristic polynomial is

f (λ) = λ2 − Tr(A)λ+ det(A) = λ2 −
5
2
λ+ 1= (λ− 2)

�

λ−
1
2

�

.

We compute the 2-eigenspace:

(A− 2I3)v = 0 ⇐⇒
1

10

�

−9 6
9 −6

�

v = 0
RREF
−−→

�

1 −2/3
0 0

�

v = 0.

The parametric form of this equation is x = 2/3y , so one eigenvector is v1 =
�2/3

1

�

.
For the 1/2-eigenspace, we have:

�

A−
1
2

I3

�

v = 0 ⇐⇒
1
10

�

6 6
9 9

�

v = 0
RREF
−−→

�

1 1
0 0

�

v = 0.

The parametric form of this equation is x = −y , so an eigenvector is v2 =
�−1

1

�

. It
follows that A= C DC−1, where

C =
�

2/3 −1
1 1

�

D =
�

2 0
0 1/2

�

.
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The diagonal matrix D scales the x-coordinate by 2 and the y-coordinate by
1/2. Therefore, it moves vectors closer to the x-axis and farther from the y-axis.
In fact, since (2x)(y/2) = x y , multiplication by D does not move a point off of a
hyperbola x y = C .

The matrix A does the same thing, in the v1, v2-coordinate system: multiplying
a vector by A scales the v1-coordinate by 2 and the v2-coordinate by 1/2. Therefore,
A moves vectors closer to the 2-eigenspace and farther from the 1/2-eigenspace.

Use this link to view the online demo

Dynamics of the matrices A and D. Click “multiply” to multiply the colored points by
D on the left and A on the right.

Example (Eigenvalues |λ1|> 1, |λ2|> 1). Describe how the matrix

A=
1
5

�

13 −2
−3 12

�

acts on the plane.

Solution. First we diagonalize A. The characteristic polynomial is

f (λ) = λ2 − Tr(A)λ+ det(A) = λ2 − 5λ+ 6= (λ− 2)(λ− 3).

Next we compute the 2-eigenspace:

(A− 2I3)v = 0 ⇐⇒
1
5

�

3 −2
−3 2

�

v = 0
RREF
−−→

�

1 −2/3
0 0

�

v = 0.

The parametric form of this equation is x = 2/3y , so one eigenvector is v1 =
�2/3

1

�

.
For the 3-eigenspace, we have:

(A− 3I3)v = 0 ⇐⇒
1
5

�

−2 −2
−3 −3

�

v = 0
RREF
−−→

�

1 1
0 0

�

v = 0.

The parametric form of this equation is x = −y , so an eigenvector is v2 =
�−1

1

�

. It
follows that A= C DC−1, where

C =
�

2/3 −1
1 1

�

D =
�

2 0
0 3

�

.

The diagonal matrix D scales the x-coordinate by 2 and the y-coordinate by 3.
Therefore, it moves vectors farther from both the x-axis and the y-axis, but faster
in the y-direction than the x-direction.

The matrix A does the same thing, in the v1, v2-coordinate system: multiplying
a vector by A scales the v1-coordinate by 2 and the v2-coordinate by 3. Therefore,
A moves vectors farther from the 2-eigenspace and the 3-eigenspace, but faster in
the v2-direction than the v1-direction.

https://ulrikbuchholtz.dk/ila/demos/dynamics2.html?mat=2,0:0,1/2&v1=2/3,1&v2=-1,1&y=1,5
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Use this link to view the online demo

Dynamics of the matrices A and D. Click “multiply” to multiply the colored points by
D on the left and A on the right.

Example (Eigenvalues |λ1|< 1, |λ2|< 1). Describe how the matrix

A′ =
1

30

�

12 2
3 13

�

acts on the plane.

Solution. This is the inverse of the matrix A from the previous example. In that
example, we found A= C DC−1 for

C =
�

2/3 −1
1 1

�

D =
�

2 0
0 3

�

.

Therefore, remembering that taking inverses reverses the order of multiplication,
we have

A′ = A−1 = (C DC−1)−1 = (C−1)−1D−1C−1 = C
�

1/2 0
0 1/3

�

C−1.

The diagonal matrix D−1 does the opposite of what D does: it scales the x-coordinate
by 1/2 and the y-coordinate by 1/3. Therefore, it moves vectors closer to both
coordinate axes, but faster in the y-direction. The matrix A′ does the same thing,
but with respect to the v1, v2-coordinate system.

Use this link to view the online demo

Dynamics of the matrices A′ and D−1. Click “multiply” to multiply the colored points
by D−1 on the left and A′ on the right.

Example (Eigenvalues |λ1|= 1, |λ2|< 1). Describe how the matrix

A=
1
6

�

5 −1
−2 4

�

acts on the plane.

Solution. First we diagonalize A. The characteristic polynomial is

f (λ) = λ2 − Tr(A)λ+ det(A) = λ2 −
3
2
λ+

1
2
= (λ− 1)

�

λ−
1
2

�

.

Next we compute the 1-eigenspace:

(A− I3)v = 0 ⇐⇒
1
6

�

−1 −1
−2 −2

�

v = 0
RREF
−−→

�

1 1
0 0

�

v = 0.

https://ulrikbuchholtz.dk/ila/demos/dynamics2.html?mat=2,0:0,3&v1=2/3,1&v2=-1,1&y=2,1
https://ulrikbuchholtz.dk/ila/demos/dynamics2.html?mat=1/2,0:0,1/3&v1=2/3,1&v2=-1,1&y=9,3


304 CHAPTER 6. EIGENVALUES AND EIGENVECTORS

The parametric form of this equation is x = −y , so one eigenvector is v1 =
�−1

1

�

.
For the 1/2-eigenspace, we have:

�

A−
1
2

I3

�

v = 0 ⇐⇒
1
6

�

2 −1
−2 1

�

v = 0
RREF
−−→

�

1 −1/2
0 0

�

v = 0.

The parametric form of this equation is x = 1/2y , so an eigenvector is v2 =
�1/2

1

�

.
It follows that A= C DC−1, where

C =
�

−1 1/2
1 1

�

D =
�

1 0
0 1/2

�

.

The diagonal matrix D scales the y-coordinate by 1/2 and does not move the
x-coordinate. Therefore, it simply moves vectors closer to the x-axis along ver-
tical lines. The matrix A does the same thing, in the v1, v2-coordinate system:
multiplying a vector by A scales the v2-coordinate by 1/2 and does not change
the v1-coordinate. Therefore, A “sucks vectors into the 1-eigenspace” along lines
parallel to v2.

Use this link to view the online demo

Dynamics of the matrices A and D. Click “multiply” to multiply the colored points by
D on the left and A on the right.

Interactive: A diagonalizable 3× 3 matrix. The diagonal matrix

D =





1/2 0 0
0 2 0
0 0 3/2





scales the x-coordinate by 1/2, the y-coordinate by 2, and the z-coordinate by 3/2.
Looking straight down at the x y-plane, the points follow parabolic paths taking
them away from the x-axis and toward the y-axis. The z-coordinate is scaled by
3/2, so points fly away from the x y-plane in that direction.

If A = C DC−1 for some invertible matrix C , then A does the same thing as D,
but with respect to the coordinate system defined by the columns of C .

Use this link to view the online demo

Dynamics of the matrices A and D. Click “multiply” to multiply the colored points by
D on the left and A on the right.

6.4.3 Algebraic and Geometric Multiplicity

In this subsection, we give a variant of the diagonalization theorem that provides
another criterion for diagonalizability. It is stated in the language of multiplicities
of eigenvalues.

https://ulrikbuchholtz.dk/ila/demos/dynamics2.html?mat=1,0:0,1/2&v1=-1,1&v2=1/2,1&y=2,7
https://ulrikbuchholtz.dk/ila/demos/dynamics2.html?mat=1/2,0:0,2&eigenz=3/2&v1=-7/6,2/6,5/6&v2=-1/6,-9/6,0&v3=2/6,-1/6,3/6&y=8,1,1
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In algebra, we define the multiplicity of a root λ0 of a polynomial f (λ) to be
the number of factors of λ−λ0 that divide f (λ). For instance, in the polynomial

f (λ) = −λ3 + 4λ2 − 5λ+ 2= −(λ− 1)2(λ− 2),

the root λ0 = 2 has multiplicity 1, and the root λ0 = 1 has multiplicity 2.

Definition. Let A be an n× n matrix, and let λ be an eigenvalue of A.

1. The algebraic multiplicity of λ is its multiplicity as a root of the character-
istic polynomial of A.

2. The geometric multiplicity of λ is the dimension of the λ-eigenspace.

Since the λ-eigenspace of A is Nul(A−λIn), its dimension is the number of free
variables in the system of equations (A− λIn)x = 0, i.e., the number of columns
without pivots in the matrix A−λIn.

Example. The shear matrix

A=
�

1 1
0 1

�

has only one eigenvalue λ = 1. The characteristic polynomial of A is f (λ) =
(λ−1)2, so 1 has algebraic multiplicity 2, as it is a double root of f . On the other
hand, we showed in this example that the 1-eigenspace of A is the x-axis, so the
geometric multiplicity of 1 is equal to 1. This matrix is not diagonalizable.

Use this link to view the online demo

Eigenspace of the shear matrix, with multiplicities.

The identity matrix

I2 =
�

1 0
0 1

�

also has characteristic polynomial (λ−1)2, so the eigenvalue 1 has algebraic multi-
plicity 2. Since every nonzero vector in R2 is an eigenvector of I2 with eigenvalue
1, the 1-eigenspace is all of R2, so the geometric multiplicity is 2 as well. This
matrix is diagonal.

Use this link to view the online demo

Eigenspace of the identity matrix, with multiplicities.

Example. Continuing with this example, let

A=





4 −3 0
2 −1 0
1 −1 1



 .

https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=1,1:0,1
https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=1,0:0,1
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The characteristic polynomial is f (λ) = −(λ− 1)2(λ− 2), so that 1 and 2 are the
eigenvalues, with algebraic multiplicities 2 and 1, respectively. We computed that
the 1-eigenspace is a plane and the 2-eigenspace is a line, so that 1 and 2 also have
geometric multiplicities 2 and 1, respectively. This matrix is diagonalizable.

Use this link to view the online demo

The green plane is the 1-eigenspace of A, and the violet line is the 2-eigenspace. Hence
the geometric multiplicity of the 1-eigenspace is 2, and the geometric multiplicity of
the 2-eigenspace is 1.

In this example, we saw that the matrix

A=





1 1 0
0 1 0
0 0 2





also has characteristic polynomial f (λ) = −(λ − 1)2(λ − 2), so that 1 and 2 are
the eigenvalues, with algebraic multiplicities 2 and 1, respectively. In this case,
however, both eigenspaces are lines, so that both eigenvalues have geometric mul-
tiplicity 1. This matrix is not diagonalizable.

Use this link to view the online demo

Both eigenspaces of A are lines, so they both have geometric multiplicity 1.

We saw in the above examples that the algebraic and geometric multiplicities
need not coincide. However, they do satisfy the following fundamental inequality,
the proof of which is beyond the scope of this text.

Theorem (Algebraic and Geometric Multiplicity). Let A be a square matrix and let
λ be an eigenvalue of A. Then

1≤ (the geometric multiplicity of λ)≤ (the algebraic multiplicity of λ).

In particular, if the algebraic multiplicity of λ is equal to 1, then so is the geo-
metric multiplicity.

If A has an eigenvalue λ with algebraic multiplicity 1, then the λ-eigenspace
is a line.

We can use the theorem to give another criterion for diagonalizability (in ad-
dition to the diagonalization theorem).

Diagonalization Theorem, Variant. Let A be an n × n matrix. The following are
equivalent:

https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=4,-3,0:2,-1,0:1,-1,1
https://ulrikbuchholtz.dk/ila/demos/eigenspace.html?mat=1,1,0:0,1,0:0,0,2
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1. A is diagonalizable.

2. The sum of the geometric multiplicities of the eigenvalues of A is equal to n.

3. The sum of the algebraic multiplicities of the eigenvalues of A is equal to n, and
for each eigenvalue, the geometric multiplicity equals the algebraic multiplicity.

Proof. We will show 1 =⇒ 2 =⇒ 3 =⇒ 1. First suppose that A is diagonalizable.
Then A has n linearly independent eigenvectors v1, v2, . . . , vn. This implies that the
sum of the geometric multiplicities is at least n: for instance, if v1, v2, v3 have the
same eigenvalue λ, then the geometric multiplicity of λ is at least 3 (as the λ-
eigenspace contains three linearly independent vectors), and so on. But the sum
of the algebraic multiplicities is greater than or equal to the sum of the geometric
multiplicities by the theorem, and the sum of the algebraic multiplicities is at most
n because the characteristic polynomial has degree n. Therefore, the sum of the
geometric multiplicities equals n.

Now suppose that the sum of the geometric multiplicities equals n. As above,
this forces the sum of the algebraic multiplicities to equal n as well. As the algebraic
multiplicities are all greater than or equal to the geometric multiplicities in any
case, this implies that they are in fact equal.

Finally, suppose that the third condition is satisfied. Then the sum of the geo-
metric multiplicities equals n. Suppose that the distinct eigenvectors areλ1,λ2, . . . ,λk,
and that Bi is a basis for the λi-eigenspace, which we call Vi. We claim that the col-
lection B = {v1, v2, . . . , vn} of all vectors in all of the eigenspace bases Bi is linearly
independent. Consider the vector equation

0= c1v1 + c2v2 + · · ·+ cnvn.

Grouping the eigenvectors with the same eigenvalues, this sum has the form

0= (something in V1)+ (something in V2)+ · · ·+ (something in Vk).

Since eigenvectors with distinct eigenvalues are linearly independent, each “some-
thing in Vi” is equal to zero. But this implies that all coefficients c1, c2, . . . , cn are
equal to zero, since the vectors in each Bi are linearly independent. Therefore, A
has n linearly independent eigenvectors, so it is diagonalizable.

The first part of the third statement simply says that the characteristic poly-
nomial of A factors completely into linear polynomials over the real numbers: in
other words, there are no complex (non-real) roots. The second part of the third
statement says in particular that for any diagonalizable matrix, the algebraic and
geometric multiplicities coincide.

Let A be a square matrix and let λ be an eigenvalue of A. If the algebraic
multiplicity of λ does not equal the geometric multiplicity, then A is not diag-
onalizable.

The examples at the beginning of this subsection illustrate the theorem. Here
we give some general consequences for diagonalizability of 2×2 and 3×3 matrices.
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Diagonalizability of 2×2 Matrices. Let A be a 2×2 matrix. There are four cases:

1. A has two different eigenvalues. In this case, each eigenvalue has algebraic
and geometric multiplicity equal to one. This implies A is diagonalizable.
For example:

A=
�

1 7
0 2

�

.

2. A has one eigenvalue λ of algebraic and geometric multiplicity 2. To say
that the geometric multiplicity is 2 means that Nul(A− λI2) = R2, i.e., that
every vector in R2 is in the null space of A− λI2. This implies that A− λI2

is the zero matrix, so that A is the diagonal matrix λI2. In particular, A is
diagonalizable. For example:

A=
�

1 0
0 1

�

.

3. A has one eigenvalue λ of algebraic multiplicity 2 and geometric multiplicity
1. In this case, A is not diagonalizable, by part 3 of the theorem. For example,
a shear:

A=
�

1 1
0 1

�

.

4. A has no eigenvalues. This happens when the characteristic polynomial has
no real roots. In particular, A is not diagonalizable. For example, a rotation:

A=
�

1 −1
1 1

�

.

Diagonalizability of 3× 3 Matrices. Let A be a 3× 3 matrix. We can analyze the
diagonalizability of A on a case-by-case basis, as in the previous example.

1. A has three different eigenvalues. In this case, each eigenvalue has algebraic
and geometric multiplicity equal to one. This implies A is diagonalizable.
For example:

A=





1 7 4
0 2 3
0 0 −1



 .

2. A has two distinct eigenvalues λ1,λ2. In this case, one has algebraic mul-
tiplicity one and the other has algebraic multiplicity two; after reordering,
we can assume λ1 has multiplicity 1 and λ2 has multiplicity 2. This implies
that λ1 has geometric multiplicity 1, so A is diagonalizable if and only if the
λ2-eigenspace is a plane. For example:

A=





1 7 4
0 2 0
0 0 2



 .
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On the other hand, if the geometric multiplicity of λ2 is 1, then A is not
diagonalizable. For example:

A=





1 7 4
0 2 1
0 0 2



 .

3. A has only one eigenvalue λ. If the algebraic multiplicity of λ is 1, then A
is not diagonalizable. This happens when the characteristic polynomial has
two complex (non-real) roots. For example:

A=





1 −1 0
1 1 0
0 0 2



 .

Otherwise, the algebraic multiplicity of λ is equal to 3. In this case, if the
geometric multiplicity is 1:

A=





1 1 1
0 1 1
0 0 1





or 2:

A=





1 0 1
0 1 1
0 0 1





then A is not diagonalizable. If the geometric multiplicity is 3, then Nul(A−
λI3) = R3, so that A−λI3 is the zero matrix, and hence A= λI3. Therefore,
in this case A is necessarily diagonal, as in:

A=





1 0 0
0 1 0
0 0 1



 .

Similarity and multiplicity Recall from this fact in Section 6.3 that similar ma-
trices have the same eigenvalues. It turns out that both notions of multiplicity of
an eigenvalue are preserved under similarity.

Theorem. Let A and B be similar n×n matrices, and let λ be an eigenvalue of A and
B. Then:

1. The algebraic multiplicity of λ is the same for A and B.

2. The geometric multiplicity of λ is the same for A and B.
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Proof. Since A and B have the same characteristic polynomial, the multiplicity of
λ as a root of the characteristic polynomial is the same for both matrices, which
proves the first statement. For the second, suppose that A= CBC−1 for an invert-
ible matrix C . By this fact in Section 6.3, the matrix C takes eigenvectors of B to
eigenvectors of A, both with eigenvalue λ.

Let {v1, v2, . . . , vk} be a basis of theλ-eigenspace of B. We claim that {C v1, C v2, . . . , C vk}
is linearly independent. Suppose that

c1C v1 + c2C v2 + · · ·+ ckC vk = 0.

Regrouping, this means

C
�

c1v1 + c2v2 + · · ·+ ckvk

�

= 0.

By the invertible matrix theorem in Section 6.1, the null space of C is trivial, so
this implies

c1v1 + c2v2 + · · ·+ ckvk = 0.

Since v1, v2, . . . , vk are linearly independent, we get c1 = c2 = · · · = ck = 0, as
desired.

By the previous paragraph, the dimension of the λ-eigenspace of A is greater
than or equal to the dimension of the λ-eigenspace of B. By symmetry (B is similar
to A as well), the dimensions are equal, so the geometric multiplicities coincide.

For instance, the four matrices in this example are not similar to each other,
because the algebraic and/or geometric multiplicities of the eigenvalues do not
match up. Or, combined with the above theorem, we see that a diagonalizable
matrix cannot be similar to a non-diagonalizable one, because the algebraic and
geometric multiplicities of such matrices cannot both coincide.

Example. Continuing with this example, let

A=





4 −3 0
2 −1 0
1 −1 1



 .

This is a diagonalizable matrix that is similar to

D =





1 0 0
0 1 0
0 0 2



 using the matrix C =





1 0 3
1 0 2
0 1 1



 .

The 1-eigenspace of D is the x y-plane, and the 2-eigenspace is the z-axis. The
matrix C takes the x y-plane to the 1-eigenspace of A, which is again a plane, and
the z-axis to the 2-eigenspace of A, which is again a line. This shows that the
geometric multiplicities of A and D coincide.
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Use this link to view the online demo

The matrix C takes the x y-plane to the 1-eigenspace of A (the grid) and the z-axis to
the 2-eigenspace (the green line).

The converse of the theorem is false: there exist matrices whose eigenvalues
have the same algebraic and geometric multiplicities, but which are not similar.
See the example below. However, for 2×2 and 3×3 matrices whose characteristic
polynomial has no complex (non-real) roots, the converse of the theorem is true.
(We will handle the case of complex roots in Section 6.5.)

Example (Matrices that look similar but are not). Show that the matrices

A=







0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0






and B =







0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0







have the same eigenvalues with the same algebraic and geometric multiplicities,
but are not similar.

Solution. These matrices are upper-triangular. They both have characteristic
polynomial f (λ) = λ4, so they both have one eigenvalue 0 with algebraic mul-
tiplicity 4. The 0-eigenspace is the null space, which has dimension 2 in each
case because A and B have two columns without pivots. Hence 0 has geometric
multiplicity 2 in each case.

To show that A and B are not similar, we note that

A2 =







0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0






and B2 =







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0






,

as the reader can verify. If A= CBC−1 then by this important note, we have

A2 = CB2C−1 = C0C−1 = 0,

which is not the case.

On the other hand, suppose that A and B are diagonalizable matrices with the
same characteristic polynomial. Since the geometric multiplicities of the eigenval-
ues coincide with the algebraic multiplicities, which are the same for A and B, we
conclude that there exist n linearly independent eigenvectors of each matrix, all
of which have the same eigenvalues. This shows that A and B are both similar to
the same diagonal matrix. Using the transitivity property of similar matrices, this
shows:

Diagonalizable matrices are similar if and only if they have the same character-
istic polynomial, or equivalently, the same eigenvalues with the same algebraic
multiplicities.

https://ulrikbuchholtz.dk/ila/demos/similarity.html?C=1,0,3:1,0,2:0,1,1&B=1,0,0:0,1,0:0,0,2
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Example. Show that the matrices

A=





1 7 2
0 −1 3
0 0 4



 and B =





1 0 0
−2 4 0
−5 −4 −1





are similar.

Solution. Both matrices have the three distinct eigenvalues 1,−1, 4. Hence they
are both diagonalizable, and are similar to the diagonal matrix





1 0 0
0 −1 0
0 0 4



 .

By the transitivity property of similar matrices, this implies that A and B are similar
to each other.

Example (Diagonal matrices with the same entries are similar). Any two diagonal
matrices with the same diagonal entries (possibly in a different order) are similar
to each other. Indeed, such matrices have the same characteristic polynomial. We
saw this phenomenon in this example, where we noted that





1 0 0
0 2 0
0 0 3



=





0 0 1
0 1 0
1 0 0









3 0 0
0 2 0
0 0 1









0 0 1
0 1 0
1 0 0





−1

.

6.5 Complex Eigenvalues

Objectives

1. Learn to find complex eigenvalues and eigenvectors of a matrix.

2. Learn to recognize a rotation-scaling matrix, and compute by how much the
matrix rotates and scales.

3. Understand the geometry of 2× 2 and 3× 3 matrices with a complex eigen-
value.

4. Recipes: a 2 × 2 matrix with a complex eigenvalue is similar to a rotation-
scaling matrix, the eigenvector trick for 2× 2 matrices.

5. Pictures: the geometry of matrices with a complex eigenvalue.

6. Theorems: the rotation-scaling theorem, the block diagonalization theorem.

7. Vocabulary: rotation-scaling matrix.
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In Section 6.4, we saw that an n×n matrix whose characteristic polynomial has
n distinct real roots is diagonalizable: it is similar to a diagonal matrix, which is
much simpler to analyze. The other possibility is that a matrix has complex roots,
and that is the focus of this section. It turns out that such a matrix is similar (in the
2×2 case) to a rotation-scaling matrix, which is also relatively easy to understand.

In a certain sense, this entire section is analogous to Section 6.4, with rotation-
scaling matrices playing the role of diagonal matrices.

See Appendix A for a review of the complex numbers.

6.5.1 Matrices with Complex Eigenvalues

As a consequence of the fundamental theorem of algebra as applied to the char-
acteristic polynomial, we see that:

Every n×n matrix has exactly n complex eigenvalues, counted with multiplic-
ity.

We can compute a corresponding (complex) eigenvector in exactly the same
way as before: by row reducing the matrix A−λIn. Now, however, we have to do
arithmetic with complex numbers.

Example (A 2× 2 matrix). Find the complex eigenvalues and eigenvectors of the
matrix

A=
�

1 −1
1 1

�

.

Solution. The characteristic polynomial of A is

f (λ) = λ2 − Tr(A)λ+ det(A) = λ2 − 2λ+ 2.

The roots of this polynomial are

λ=
2±
p

4− 8
2

= 1± i.

First we compute an eigenvector for λ= 1+ i. We have

A− (1+ i)I2 =
�

1− (1+ i) −1
1 1− (1+ i)

�

=
�

−i −1
1 −i

�

.

Now we row reduce, noting that the second row is i times the first:

�

−i −1
1 −i

�

R2=R2−iR1−−−−−−→
�

−i −1
0 0

�

R1=R1÷−i
−−−−−→

�

1 −i
0 0

�

.
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The parametric form is x = i y , so that an eigenvector is v1 =
� i

1

�

. Next we compute
an eigenvector for λ= 1− i. We have

A− (1− i)I2 =
�

1− (1− i) −1
1 1− (1− i)

�

=
�

i −1
1 i

�

.

Now we row reduce, noting that the second row is −i times the first:
�

i −1
1 i

�

R2=R2+iR1−−−−−−→
�

i −1
0 0

�

R1=R1÷i
−−−−→

�

1 i
0 0

�

.

The parametric form is x = −i y , so that an eigenvector is v2 =
�−i

1

�

.
We can verify our answers:

�

1 −1
1 1

��

i
1

�

=
�

i − 1
i + 1

�

= (1+ i)
�

i
1

�

�

1 −1
1 1

��

−i
1

�

=
�

−i − 1
−i + 1

�

= (1− i)
�

−i
1

�

.

Example (A 3× 3 matrix). Find the eigenvalues and eigenvectors, real and com-
plex, of the matrix

A=





4/5 −3/5 0
3/5 4/5 0

1 2 2



 .

Solution. We compute the characteristic polynomial by expanding cofactors along
the third row:

f (λ) = det





4/5−λ −3/5 0
3/5 4− 5−λ 0

1 2 2−λ



= (2−λ)
�

λ2 −
8
5
λ+ 1

�

.

This polynomial has one real root at 2, and two complex roots at

λ=
8/5±

p

64/25− 4
2

=
4± 3i

5
.

Therefore, the eigenvalues are

λ= 2,
4+ 3i

5
,

4− 3i
5

.

We eyeball that v1 = e3 is an eigenvector with eigenvalue 2, since the third column
is 2e3.

Next we find an eigenvector with eigenvaluue (4+ 3i)/5. We have

A−
4+ 3i

5
I3 =





−3i/5 −3/5 0
3/5 −3i/5 0

1 2 2− (4+ 3i)/5





R1=R1×−5/3
−−−−−−−→

R2=R2×5/3





i 1 0
1 −i 0
1 2 6−3i

5



 .
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We row reduce, noting that the second row is −i times the first:




i 1 0
1 −i 0
1 2 6−3i

5





R2=R2+iR1−−−−−−−−→





i 1 0
0 0 0
1 2 6−3i

5





R3=R3+iR1−−−−−−−−→





i 1 0
0 0 0
0 2+ i 6−3i

5





R2←→R3−−−−−−−−→





i 1 0
0 2+ i 6−3i

5
0 0 0





R1=R1÷i
−−−−−−−−→

R2 = R2 ÷ (2+ i)





1 −i 0
0 1 9−12i

25
0 0 0





R1=R1+iR2−−−−−−−−→





1 0 12+9i
25

0 1 9−12i
25

0 0 0



 .

The free variable is z; the parametric form of the solution is






x = −
12+ 9i

25
z

y = −
9− 12i

25
z.

Taking z = 25 gives the eigenvector

v2 =





−12− 9i
−9+ 12i

25



 .

A similar calculation (replacing all occurences of i by−i) shows that an eigenvector
with eigenvalue (4− 3i)/5 is

v3 =





−12+ 9i
−9− 12i

25



 .

We can verify our calculations:




4/5 −3/5 0
3/5 4/5 0

1 2 2









−12+ 9i
−9− 12i

25



=





−21/5+ 72i/5
−72/5− 21i/5

20− 15i



=
4+ 3i

5





−12+ 9i
−9− 12i

25









4/5 −3/5 0
3/5 4/5 0

1 2 2









−12− 9i
−9+ 12i

25



=





−21/5− 72i/5
−72/5+ 21i/5

20+ 15i



=
4− 3i

5





−12− 9i
−9+ 12i

25



 .



316 CHAPTER 6. EIGENVALUES AND EIGENVECTORS

If A is a matrix with real entries, then its characteristic polynomial has real
coefficients, so this note implies that its complex eigenvalues come in conjugate
pairs. In the first example, we notice that

1+ i has an eigenvector v1 =
�

i
1

�

1− i has an eigenvector v2 =
�

−i
1

�

.

In the second example,

4+ 3i
5

has an eigenvector v1 =





−12− 9i
−9+ 12i

25





4− 3i
5

has an eigenvector v2 =





−12+ 9i
−9− 12i

25





In these cases, an eigenvector for the conjugate eigenvalue is simply the conju-
gate eigenvector (the eigenvector obtained by conjugating each entry of the first
eigenvector). This is always true. Indeed, if Av = λv then

Av = Av = λv = λv,

which exactly says that v is an eigenvector of A with eigenvalue λ.

Let A be a matrix with real entries. If

λ is a complex eigenvalue with eigenvector v,

then λ is a complex eigenvalue with eigenvector v.

In other words, both eigenvalues and eigenvectors come in conjugate pairs.

Since it can be tedious to divide by complex numbers while row reducing, it is
useful to learn the following trick, which works equally well for matrices with real
entries.

Eigenvector Trick for 2×2 Matrices. Let A be a 2×2 matrix, and let λ be a (real
or complex) eigenvalue. Then

A−λI2 =
�

z w
⋆ ⋆

�

=⇒
�

−w
z

�

is an eigenvector with eigenvalue λ,

assuming the first row of A−λI2 is nonzero.
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Indeed, since λ is an eigenvalue, we know that A−λI2 is not an invertible ma-
trix. It follows that the rows are collinear (otherwise the determinant is nonzero),
so that the second row is automatically a (complex) multiple of the first:

�

z w
⋆ ⋆

�

=
�

z w
cz cw

�

.

It is obvious that
�−w

z

�

is in the null space of this matrix, as is
� w
−z

�

, for that matter.
Note that we never had to compute the second row of A−λI2, let alone row reduce!

Example (A 2×2 matrix, the easy way). Find the complex eigenvalues and eigen-
vectors of the matrix

A=
�

1 −1
1 1

�

.

Solution. Since the characteristic polynomial of a 2× 2 matrix A is f (λ) = λ2 −
Tr(A)λ+ det(A), its roots are

λ=
Tr(A)±

p

Tr(A)2 − 4det(A)
2

=
2±
p

4− 8
2

= 1± i.

To find an eigenvector with eigenvalue 1+ i, we compute

A− (1+ i)I2 =
�

−i −1
⋆ ⋆

�

eigenvector
−−−−−→ v1 =

�

1
−i

�

.

The eigenvector for the conjugate eigenvalue is the complex conjugate:

v2 = v1 =
�

1
i

�

.

In this example we found the eigenvectors
� i

1

�

and
�−i

1

�

for the eigenvalues 1+ i
and 1 − i, respectively, but in this example we found the eigenvectors

� 1
−i

�

and
�1

i

�

for the same eigenvalues of the same matrix. These vectors do not look like
multiples of each other at first—but since we now have complex numbers at our
disposal, we can see that they actually are multiples:

−i
�

i
1

�

=
�

1
−i

�

i
�

−i
1

�

=
�

1
i

�

.

6.5.2 Rotation-Scaling Matrices

The most important examples of matrices with complex eigenvalues are rotation-
scaling matrices, i.e., scalar multiples of rotation matrices.
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Definition. A rotation-scaling matrix is a 2× 2 matrix of the form

�

a −b
b a

�

,

where a and b are real numbers, not both equal to zero.

The following proposition justifies the name.

Proposition. Let

A=
�

a −b
b a

�

be a rotation-scaling matrix. Then:

1. A is a product of a rotation matrix

�

cosθ − sinθ
sinθ cosθ

�

with a scaling matrix
�

r 0
0 r

�

.

2. The scaling factor r is

r =
Æ

det(A) =
p

a2 + b2.

3. The rotation angle θ is the counterclockwise angle from the positive x-axis to
the vector

�a
b

�

:

�

a
b

�

θ

4. The eigenvalues of A are λ= a± bi.

Proof. Set r =
p

det(A) =
p

a2 + b2. The point (a/r, b/r) has the property that

�a
r

�2
+
�

b
r

�2

=
a2 + b2

r2
= 1.

In other words (a/r, b/r) lies on the unit circle. Therefore, it has the form (cosθ , sinθ ),
where θ is the counterclockwise angle from the positive x-axis to the vector

�a/r
b/r

�

,

or since it is on the same line, to
�a

b

�

:
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�

a
b

�

θ(a/r, b/r)

�

a/r
b/r

�

=
�

cosθ
sinθ

�

.

It follows that

A= r
�

a/r −b/r
b/r a/r

�

=
�

r 0
0 r

��

cosθ − sinθ
sinθ cosθ

�

,

as desired.
For the last statement, we compute the eigenvalues of A as the roots of the

characteristic polynomial:

λ=
Tr(A)±

p

Tr(A)2 − 4det(A)
2

=
2a±

p

4a2 − 4(a2 + b2)
2

= a± bi.

Geometrically, a rotation-scaling matrix does exactly what the name says: it
rotates and scales (in either order).

Example (A rotation-scaling matrix). What does the matrix

A=
�

1 −1
1 1

�

do geometrically?

Solution. This is a rotation-scaling matrix with a = b = 1. Therefore, it scales
by a factor of

p

det(A) =
p

2 and rotates counterclockwise by 45◦:

�

1
1

�

45◦

Here is a picture of A:

A

rotate by 45◦

scale by
p

2
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An interactive figure is included below.

Use this link to view the online demo

Multiplication by the matrix A rotates the plane by 45◦ and dilates by a factor of
p

2.
Move the input vector x to see how the output vector b changes.

Example (A rotation-scaling matrix). What does the matrix

A=

�

−
p

3 −1
1 −

p
3

�

do geometrically?

Solution. This is a rotation-scaling matrix with a = −
p

3 and b = 1. Therefore,
it scales by a factor of

p

det(A) =
p

3+ 1= 2 and rotates counterclockwise by the
angle θ in the picture:

�

−
p

3
1

�

θ

To compute this angle, we do a bit of trigonometry:

�

−
p

3
1

�

θ1
p

3
ϕ

ϕ = tan−1
�

1
p

3

�

=
π

6

θ = π−ϕ =
5π
6

.

Therefore, A rotates counterclockwise by 5π/6 and scales by a factor of 2.

A

rotate by
5π
6

scale by 2

https://ulrikbuchholtz.dk/ila/demos/twobytwo.html?mat=1,-1,1,1&closed=true&pic=theo5.jpg
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An interactive figure is included below.

Use this link to view the online demo

Multiplication by the matrix A rotates the plane by 5π/6 and dilates by a factor of 2.
Move the input vector x to see how the output vector b changes.

The matrix in the second example has second column
�−
p

3
1

�

, which is rotated
counterclockwise from the positive x-axis by an angle of 5π/6. This rotation angle
is not equal to tan−1

�

1/(−
p

3)
�

= −π6 . The problem is that arctan always outputs
values between−π/2 andπ/2: it does not account for points in the second or third
quadrants. This is why we drew a triangle and used its (positive) edge lengths to
compute the angle ϕ:

�

−
p

3
1

�

θ1
p

3
ϕ

ϕ = tan−1
�

1
p

3

�

=
π

6

θ = π−ϕ =
5π
6

.

Alternatively, we could have observed that
�−
p

3
1

�

lies in the second quadrant,
so that the angle θ in question is

θ = tan−1
�

1

−
p

3

�

+π.

When finding the rotation angle of a vector
�a

b

�

, do not blindly compute
tan−1(b/a), since this will give the wrong answer when

�a
b

�

is in the second or
third quadrant. Instead, draw a picture.

6.5.3 Geometry of 2× 2 Matrices with a Complex Eigenvalue

Let A be a 2×2 matrix with a complex, non-real eigenvalue λ. Then A also has the
eigenvalue λ ̸= λ. In particular, A has distinct eigenvalues, so it is diagonalizable
using the complex numbers. We often like to think of our matrices as describing
transformations of Rn (as opposed to Cn). Because of this, the following construc-
tion is useful. It gives something like a diagonalization, except that all matrices
involved have real entries.

https://ulrikbuchholtz.dk/ila/demos/twobytwo.html?mat=-sqrt(3),-1,1,-sqrt(3)&closed=true&pic=theo1.jpg
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Rotation-Scaling Theorem. Let A be a 2×2 real matrix with a complex (non-real)
eigenvalue λ, and let v be an eigenvector. Then A= CBC−1 for

C =





| |
Re(v) Im(v)
| |



 and B =
�

Re(λ) Im(λ)
− Im(λ) Re(λ)

�

.

In particular, A is similar to a rotation-scaling matrix that scales by a factor of |λ|=
p

det(B).

Proof. First we need to show that Re(v) and Im(v) are linearly independent, since
otherwise C is not invertible. If not, then there exist real numbers x , y, not both
equal to zero, such that x Re(v) + y Im(v) = 0. Then

(y + i x)v = (y + i x)
�

Re(v) + i Im(v)
�

= y Re(v)− x Im(v) + (x Re(v) + y Im(v)) i
= y Re(v)− x Im(v).

Now, (y + i x)v is also an eigenvector of A with eigenvalue λ, as it is a scalar
multiple of v. But we just showed that (y + i x)v is a vector with real entries, and
any real eigenvector of a real matrix has a real eigenvalue. Therefore, Re(v) and
Im(v) must be linearly independent after all.

Let λ= a+ bi and v =
�x+yi

z+wi

�

. We observe that

Av = λv = (a+ bi)
�

x + yi
z +wi

�

=
�

(ax − b y) + (a y + bx)i
(az − bw) + (aw+ bz)i

�

=
�

ax − b y
az − bw

�

+ i
�

a y + bx
aw+ bz

�

.

On the other hand, we have

A
��

x
z

�

+ i
�

y
w

��

= A
�

x
z

�

+ iA
�

y
w

�

= ARe(v) + iAIm(v).

Matching real and imaginary parts gives

ARe(v) =
�

ax − b y
az − bw

�

AIm(v) =
�

a y + bx
aw+ bz

�

.

Now we compute CBC−1 Re(v) and CBC−1 Im(v). Since Ce1 = Re(v) and
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Ce2 = Im(v), we have C−1 Re(v) = e1 and C−1 Im(v) = e2, so

CBC−1 Re(v) = CBe1 = C
�

a
−b

�

= a Re(v)− b Im(v)

= a
�

x
z

�

− b
�

y
w

�

=
�

ax − b y
az − bw

�

= ARe(v)

CBC−1 Im(v) = CBe2 = C
�

b
a

�

= b Re(v) + a Im(v)

= b
�

x
z

�

+ a
�

y
w

�

=
�

a y + bx
aw+ bz

�

= AIm(v).

Therefore, ARe(v) = CBC−1 Re(v) and AIm(v) = CBC−1 Im(v).
Since Re(v) and Im(v) are linearly independent, they form a basis for R2. Let

w be any vector in R2, and write w= c Re(v) + d Im(v). Then

Aw= A
�

c Re(v) + d Im(v)
�

= cARe(v) + dAIm(v)

= cCBC−1 Re(v) + dCBC−1 Im(v)

= CBC−1
�

c Re(v) + d Im(v)
�

= CBC−1w.

This proves that A= CBC−1.

Here Re and Im denote the real and imaginary parts, respectively:

Re(a+ bi) = a Im(a+ bi) = b Re
�

x + yi
z +wi

�

=
�

x
z

�

Im
�

x + yi
z +wi

�

=
�

y
w

�

.

The rotation-scaling matrix in question is the matrix

B =
�

a −b
b a

�

with a = Re(λ), b = − Im(λ).

Geometrically, the rotation-scaling theorem says that a 2×2 matrix with a complex
eigenvalue behaves similarly to a rotation-scaling matrix. See this important note
in Section 6.3.

One should regard the rotation-scaling theorem as a close analogue of the di-
agonalization theorem in Section 6.4, with a rotation-scaling matrix playing the
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role of a diagonal matrix. Before continuing, we restate the theorem as a recipe:

Recipe: A 2 × 2 matrix with a complex eigenvalue. Let A be a 2 × 2 real
matrix.

1. Compute the characteristic polynomial

f (λ) = λ2 − Tr(A)λ+ det(A),

then compute its roots using the quadratic formula.

2. If the eigenvalues are complex, choose one of them, and call it λ.

3. Find a corresponding (complex) eigenvector v using the trick.

4. Then A= CBC−1 for

C =





| |
Re(v) Im(v)
| |



 and B =
�

Re(λ) Im(λ)
− Im(λ) Re(λ)

�

.

This scales by a factor of |λ|.

Example. What does the matrix

A=
�

2 −1
2 0

�

do geometrically?

Solution. The eigenvalues of A are

λ=
Tr(A)±

p

Tr(A)2 − 4 det(A)
2

=
2±
p

4− 8
2

= 1± i.

We choose the eigenvalue λ = 1− i and find a corresponding eigenvector, using
the trick:

A− (1− i)I2 =
�

1+ i −1
⋆ ⋆

�

eigenvector
−−−−−→ v =

�

1
1+ i

�

.

According to the rotation-scaling theorem, we have A= CBC−1 for

C =
�

Re
�

1
1+ i

�

Im
�

1
1+ i

��

=
�

1 0
1 1

�

B =
�

Re(λ) Im(λ)
− Im(λ) Re(λ)

�

=
�

1 −1
1 1

�

.

The matrix B is the rotation-scaling matrix in the above example: it rotates coun-
terclockwise by an angle of 45◦ and scales by a factor of

p
2. The matrix A does

the same thing, but with respect to the Re(v), Im(v)-coordinate system:
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B

rotate by 45◦

scale by
p

2

A

rotate by 45◦

“around an ellipse”
scale by

p
2

C−1 C

To summarize:

• B rotates around the circle centred at the origin and passing through e1 and
e2, in the direction from e1 to e2, then scales by

p
2.

• A rotates around the ellipse centred at the origin and passing through Re(v)
and Im(v), in the direction from Re(v) to Im(v), then scales by

p
2.

The reader might want to refer back to this example in Section 6.3.

Use this link to view the online demo

The geometric action of A and B on the plane. Click “multiply” to multiply the colored
points by B on the left and A on the right.

If instead we had chosen λ= 1+i as our eigenvalue, then we would have found
the eigenvector v =

� 1
1−i

�

. In this case we would have A= C ′B′(C ′)−1, where

C ′ =
�

Re
�

1
1− i

�

Im
�

1
1− i

��

=
�

1 0
1 −1

�

B′ =

�

Re(λ) Im(λ)
− Im(λ) Re(λ)

�

=
�

1 1
−1 1

�

.

So, A is also similar to a clockwise rotation by 45◦, followed by a scale by
p

2.

https://ulrikbuchholtz.dk/ila/demos/dynamics2.html?mat=1,-1:1,1&v1=1,1&v2=0,1&y=0,1&matnames=A,B,C
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Example. What does the matrix

A=

�

−
p

3+ 1 −2
1 −

p
3− 1

�

do geometrically?

Solution. The eigenvalues of A are

λ=
Tr(A)±

p

Tr(A)2 − 4det(A)
2

=
−2
p

3±
p

12− 16
2

= −
p

3± i.

We choose the eigenvalue λ= −
p

3−i and find a corresponding eigenvector, using
the trick:

A− (−
p

3− i)I2 =
�

1+ i −2
⋆ ⋆

�

eigenvector
−−−−−→ v =

�

2
1+ i

�

.

According to the rotation-scaling theorem, we have A= CBC−1 for

C =
�

Re
�

2
1+ i

�

Im
�

2
1+ i

��

=
�

2 0
1 1

�

B =
�

Re(λ) Im(λ)
− Im(λ) Re(λ)

�

=

�

−
p

3 −1
1 −

p
3

�

.

The matrix B is the rotation-scaling matrix in the above example: it rotates coun-
terclockwise by an angle of 5π/6 and scales by a factor of 2. The matrix A does
the same thing, but with respect to the Re(v), Im(v)-coordinate system:
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B

rotate by 5π/6
scale by 2

A

rotate by 5π/6
“around an ellipse”

scale by 2

C−1 C

To summarize:

• B rotates around the circle centred at the origin and passing through e1 and
e2, in the direction from e1 to e2, then scales by 2.

• A rotates around the ellipse centred at the origin and passing through Re(v)
and Im(v), in the direction from Re(v) to Im(v), then scales by 2.

The reader might want to refer back to this example in Section 6.3.

Use this link to view the online demo

The geometric action of A and B on the plane. Click “multiply” to multiply the colored
points by B on the left and A on the right.

If instead we had chosen λ= −
p

3− i as our eigenvalue, then we would have
found the eigenvector v =

� 2
1−i

�

. In this case we would have A= C ′B′(C ′)−1, where

C ′ =
�

Re
�

2
1− i

�

Im
�

2
1− i

��

=
�

2 0
1 −1

�

B′ =

�

Re(λ) Im(λ)
− Im(λ) Re(λ)

�

=

�

−
p

3 1
−1 −

p
3

�

.

So, A is also similar to a clockwise rotation by 5π/6, followed by a scale by 2.

https://ulrikbuchholtz.dk/ila/demos/dynamics2.html?mat=-sqrt(3),-1:1,-sqrt(3)&v1=2,1&v2=0,1&y=0,1&matnames=A,B,C
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We saw in the above examples that the rotation-scaling theorem can be applied
in two different ways to any given matrix: one has to choose one of the two con-
jugate eigenvalues to work with. Replacing λ by λ has the effect of replacing v by
v, which just negates all imaginary parts, so we also have A= C ′B′(C ′)−1 for

C ′ =





| |
Re(v) − Im(v)
| |



 and B′ =
�

Re(λ) − Im(λ)
Im(λ) Re(λ)

�

.

The matrices B and B′ are similar to each other. The only difference between them
is the direction of rotation, since

� Re(λ)
− Im(λ)

�

and
�Re(λ)

Im(λ)

�

are mirror images of each other
over the x-axis:

�

Re(λ)
Im(λ)

�

θ

�

Re(λ)
− Im(λ)

� −θ

The discussion that follows is closely analogous to the exposition in this sub-
section in Section 6.4, in which we studied the dynamics of diagonalizable 2× 2
matrices.

Dynamics of a 2×2 Matrix with a Complex Eigenvalue. Let A be a 2×2 matrix
with a complex (non-real) eigenvalue λ. By the rotation-scaling theorem, the
matrix A is similar to a matrix that rotates by some amount and scales by |λ|.
Hence, A rotates around an ellipse and scales by |λ|. There are three different
cases.
|λ| > 1: when the scaling factor is greater than 1, then vectors tend to get

longer, i.e., farther from the origin. In this case, repeatedly multiplying a vector
by A makes the vector “spiral out”. For example,

A=
1
p

2

�p
3+ 1 −2

1
p

3− 1

�

λ=
p

3− i
p

2
|λ|=

p
2> 1

gives rise to the following picture:
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v Av

A2v

A3v

|λ| = 1: when the scaling factor is equal to 1, then vectors do not tend to get
longer or shorter. In this case, repeatedly multiplying a vector by A simply “rotates
around an ellipse”. For example,

A=
1
2

�p
3+ 1 −2

1
p

3− 1

�

λ=
p

3− i
2

|λ|= 1

gives rise to the following picture:

vAv

A2v

A3v
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|λ|< 1: when the scaling factor is less than 1, then vectors tend to get shorter,
i.e., closer to the origin. In this case, repeatedly multiplying a vector by A makes
the vector “spiral in”. For example,

A=
1

2
p

2

�p
3+ 1 −2

1
p

3− 1

�

λ=
p

3− i

2
p

2
|λ|=

1
p

2
< 1

gives rise to the following picture:

A3v

A2v

Av

v

Interactive: |λ|> 1.

A=
1
p

2

�p
3+ 1 −2

1
p

3− 1

�

B =
1
p

2

�p
3 −1
1
p

3

�

C =
�

2 0
1 1

�

λ=
p

3− i
p

2
|λ|=

p
2> 1

Use this link to view the online demo

The geometric action of A and B on the plane. Click “multiply” to multiply the colored
points by B on the left and A on the right.

https://ulrikbuchholtz.dk/ila/demos/dynamics2.html?mat=sqrt(3/2),-1/sqrt(2):1/sqrt(2),sqrt(3/2)&v1=2,1&v2=0,1&y=0,1&matnames=A,B,C
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Interactive: |λ|= 1.

A=
1
2

�p
3+ 1 −2

1
p

3− 1

�

B =
1
2

�p
3 −1
1
p

3

�

C =
�

2 0
1 1

�

λ=
p

3− i
2

|λ|= 1

Use this link to view the online demo

The geometric action of A and B on the plane. Click “multiply” to multiply the colored
points by B on the left and A on the right.

Interactive: |λ|< 1.

A=
1

2
p

2

�p
3+ 1 −2

1
p

3− 1

�

B =
1

2
p

2

�p
3 −1
1
p

3

�

C =
�

2 0
1 1

�

λ=
p

3− i

2
p

2
|λ|=

1
p

2
< 1

Use this link to view the online demo

The geometric action of A and B on the plane. Click “multiply” to multiply the colored
points by B on the left and A on the right.

Remark (Classification of 2 × 2 matrices up to similarity). At this point, we can
write down the “simplest” possible matrix which is similar to any given 2×2 matrix
A. There are four cases:

1. A has two real eigenvalues λ1,λ2. In this case, A is diagonalizable, so A is
similar to the matrix

�

λ1 0
0 λ2

�

.

This representation is unique up to reordering the eigenvalues.

2. A has one real eigenvalue λ of geometric multiplicity 2. In this case, we saw
in this example in Section 6.4 that A is equal to the matrix

�

λ 0
0 λ

�

.

3. A has one real eigenvalue λ of geometric multiplicity 1. In this case, A is not
diagonalizable, and we saw in this remark in Section 6.4 that A is similar to
the matrix

�

λ 1
0 λ

�

.

https://ulrikbuchholtz.dk/ila/demos/dynamics2.html?mat=sqrt(3)/2,-1/2:1/2,sqrt(3)/2&v1=2,1&v2=0,1&y=0,5&matnames=A,B,C
https://ulrikbuchholtz.dk/ila/demos/dynamics2.html?mat=sqrt(3/8),-1/sqrt(8):1/sqrt(8),sqrt(3/8)&v1=2,1&v2=0,1&y=0,9&matnames=A,B,C
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4. A has no real eigenvalues. In this case, A has a complex eigenvalue λ, and A
is similar to the rotation-scaling matrix

�

Re(λ) Im(λ)
− Im(λ) Re(λ)

�

by the rotation-scaling theorem. By this proposition, the eigenvalues of a
rotation-scaling matrix

�

a −b
b a

�

are a±bi, so that two rotation-scaling matrices
�

a −b
b a

�

and
�

c −d
d c

�

are similar if and only if a = c and b = ±d.

6.5.4 Block Diagonalization

For matrices larger than 2×2, there is a theorem that combines the diagonalization
theorem in Section 6.4 and the rotation-scaling theorem. It says essentially that a
matrix is similar to a matrix with parts that look like a diagonal matrix, and parts
that look like a rotation-scaling matrix.

Block Diagonalization Theorem. Let A be a real n × n matrix. Suppose that for
each (real or complex) eigenvalue, the algebraic multiplicity equals the geometric
multiplicity. Then A= CBC−1, where B and C are as follows:

• The matrix B is block diagonal, where the blocks are 1× 1 blocks containing
the real eigenvalues (with their multiplicities), or 2× 2 blocks containing the
matrices

�

Re(λ) Im(λ)
− Im(λ) Re(Λ)

�

for each non-real eigenvalue λ (with multiplicity).

• The columns of C form bases for the eigenspaces for the real eigenvectors, or
come in pairs

�

Re(v) Im(v)
�

for the non-real eigenvectors.

The block diagonalization theorem is proved in the same way as the diagonal-
ization theorem in Section 6.4 and the rotation-scaling theorem. It is best under-
stood in the case of 3× 3 matrices.

Block Diagonalization of a 3× 3 Matrix with a Complex Eigenvalue. Let A be
a 3 × 3 matrix with a complex eigenvalue λ1. Then λ1 is another eigenvalue,
and there is one real eigenvalue λ2. Since there are three distinct eigenvalues,
they have algebraic and geometric multiplicity one, so the block diagonalization
theorem applies to A.

Let v1 be a (complex) eigenvector with eigenvalue λ1, and let v2 be a (real)
eigenvector with eigenvalue λ2. Then the block diagonalization theorem says that
A= CBC−1 for

C =





| | |
Re(v1) Im(v1) v2

| | |



 B =
Re(λ1) Im(λ1) 0
− Im(λ1) Re(λ1) 0

0 0 λ2







.
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Example (Geometry of a 3×3 matrix with a complex eigenvalue). What does the
matrix

A=
1

29





33 −23 9
22 33 −23
19 14 50





do geometrically?

Solution. First we find the (real and complex) eigenvalues of A. We compute the
characteristic polynomial using whatever method we like:

f (λ) = det(A−λI3) = −λ3 + 4λ2 − 6λ+ 4.

We search for a real root using the rational root theorem. The possible rational
roots are ±1,±2,±4; we find f (2) = 0, so that λ − 2 divides f (λ). Performing
polynomial long division gives

f (λ) = −(λ− 2)
�

λ2 − 2λ+ 2
�

.

The quadratic term has roots

λ=
2±
p

4− 8
2

= 1± i,

so that the complete list of eigenvalues is λ1 = 1− i, λ1 = 1+ i, and λ2 = 2.
Now we compute some eigenvectors, starting with λ1 = 1− i. We row reduce

(probably with the aid of a computer):

A− (1− i)I3 =
1

29





4+ 29i −23 9
22 4+ 29i −23
19 14 21+ 29i





RREF
−−→





1 0 7/5+ i/5
0 1 −2/5+ 9i/5
0 0 0



 .

The free variable is z, and the parametric form is










x = −
�

7
5
+

1
5

i
�

z

y =
�

2
5
−

9
5

i
�

z

z=5
−−−−−→
eigenvector

v1 =





−7− i
2− 9i

5



 .

For λ2 = 2, we have

A− 2I3 =
1

29





−25 −23 9
22 −25 −23
19 14 −8





RREF
−−→





1 0 −2/3
0 1 1/3
0 0 0



 .

The free variable is z, and the parametric form is






x =
2
3

z

y = −
1
3

z

z=3
−−−−−→
eigenvector

v2 =





2
−1

3



 .
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According to the block diagonalization theorem, we have A= CBC−1 for

C =





| | |
Re(v1) Im(v1) v2

| | |



=





−7 −1 2
2 −9 −1
5 0 3





B =





Re(λ1) Im(λ1) 0
− Im(λ1) Re(λ1) 0

0 0 2



=





1 −1 0
1 1 0
0 0 2



 .

The matrix B is a combination of the rotation-scaling matrix
�

1 −1
1 1

�

from this
example, and a diagonal matrix. More specifically, B acts on the x y-coordinates by
rotating counterclockwise by 45◦ and scaling by

p
2, and it scales the z-coordinate

by 2. This means that points above the x y-plane spiral out away from the z-axis
and move up, and points below the x y-plane spiral out away from the z-axis and
move down.

The matrix Adoes the same thing as B, but with respect to the {Re(v1), Im(v1), v2}-
coordinate system. That is, A acts on the Re(v1), Im(v1)-plane by spiraling out, and
A acts on the v2-coordinate by scaling by a factor of 2. See the demo below.

Use this link to view the online demo

The geometric action of A and B on R3. Click “multiply” to multiply the colored points
by B on the left and A on the right. (We have scaled C by 1/6 so that the vectors x
and y have roughly the same size.)

https://ulrikbuchholtz.dk/ila/demos/dynamics2.html?mat=1,-1:1,1&eigenz=2&v1=-7/6,2/6,5/6&v2=-1/6,-9/6,0&v3=2/6,-1/6,3/6&y=1,0,.5&matnames=A,B,C


Chapter 7

Graphs and probability theory

We now take a brief detour from the main thread of the book to explore a particular
range of examples of the theory we’ve developed so far, culminating in a discussion
of the PageRank algorithm. This gives us to an opportunity to learn the basics of
graph theory and probability theory, before covering discrete dynamical systems
and stochastic matrices, leading to the PageRank algorithm.

In Section 7.1 we introduce the basic concepts of graph theory, and we show
how to represent graphs with matrices. In Section 7.2 we introduce the basic
concepts of probability theory, including some facts about expectation values of
random variables. In Section 7.3 we present a common kind of application of
eigenvalues and eigenvectors to real-world problems in the form of discrete dy-
namical systems. We refine this application to specific problems involving proba-
bilities in Section 7.4, including searching the Internet using Google’s PageRank
algorithm.

7.1 Basic Graph Theory

Objectives

1. Learn the different definitions of graphs: directed/undirected, simple, and
weighted graphs.

2. Learn some of the common properties of graphs: complete, bipartite, planar,
tree, Hamiltonian, Eulerian

3. Recipe: find the adjacency matrix representation of a (vertex-ordered, weighted)
graph.

4. Formula: counting the number of k-step walks.

5. Vocabulary: graph, vertex, edge, loop, walk, trail, circuit, cycle, tree, de-
gree, component

335
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7.1.1 Different types of graphs

To study Google’s PageRank algortihm later, we introduce some terminology re-
garding graphs. There are variations, included directed and undirected graphs,
weighteds graphs, graphs with loops and multiple edges, or simple graphs where
these are disallowed.

Here’s an example of a graph:

A B

C D

e1

e9

e2

e3

e4

e5e6
e7

e8

e10

Definition. A (directed) graph is a pair (V, E) where V is a set of vertices and E
assigns to each pair (v, w) of vertices a set of edges with source v and target w.

In the example, the vertex set is {A, B, C , D}, and we have E(A, B) = {e1, e9}.
Note that an equivalent definition is to define a graph as a quadruple (V, E, s, t)

where V is a set of vertices, E is a set of edges, and s, t : E→ V are the source and
target functions. This is equivalent to the first definition because we can define the
set of edges as the disjoint union of the sets E(v, w) for all pairs of vertices (v, w).
Note also the definition allow multiple edges between two vertices, or even loops.
These graphs are furthermore directed, because there doesn’t have to be an edge
from v to w if there is an edge from w to v. To be fully precise, this definition
encompasses directed multigraphs.

To make sense of these possible restrictions, we need to define some more
terms.

Definition.

• An undirected graph is a pair (V, E)where V is a set of vertices and E assigns
to each unordered pair v, w of vertices a set of edges connecting v and w.

• A (directed or undirected) graph is simple if it has no loops and no multiple
edges between any (ordered or unordered) pair of vertices.

A simple directed graph can be represented as a pair (V, E) where V is a set of
vertices and E ⊆ V × V is a binary irreflexive relation on the edges. (Irreflexivity
means that (v, v) ̸∈ E for all vertices v, thus ensuring the absense of loops.)

Then a simple undirected graph corresponds to the case where the edge rela-
tion is symmetric (as well as irreflexive). Sometimes the word “graph” is taken to
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mean undirected graph, and then digraph is used to mean directed graph. So be
careful to check the definitions when reading about graphs!

Let’s look at some examples of the various types of graphs. Above we saw
general (directed multi-)graph; if we remove the edge e9 and the loop e10, we get
a simple directed graph:

A B

C D

e1

e2

e3

e4

e5e6
e7

e8

If we ignore the direction of the edges, we get a (non-simple!) undirected
graph:

A B

C D

e1

e2

e3

e4

e5e6
e7

e8

To get a simple undirected graph, we can remove the edge e6 and the edge e7:

A B

C D

e1

e2
e3

e4

e5

e8

Because we can never see too many examples of graphs (well, maybe!), let’s
look at some more famous ones. First up, complete graphs: The the complete
graph Kn is the simple graph on n vertices, with all pairs of vertices connected by
an edge, e.g., K5:
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A0

A1

A2

A3

A4

Next, the line graph Ln is the simple graph on n ordered vertices, with edges
between adjacent vertices, e.g., L5:

A0 A1 A2 A3 A4

Finally, the cycle graph Cn is the simple graph on n ordered vertices, with edges
between adjacent vertices and an edge between the first and last vertex, e.g., C5:

A0

A1

A2

A3

A4

7.1.2 Graph Terminology

Definition. The in-/out-degree of a vertex v in a directed graph is the number of
edges entering/leaving v.

Definition. The degree of a vertex v in an undirected graph is the number of
edges incident with v.



7.1. BASIC GRAPH THEORY 339

For example, in the complete graph Kn, the degree of each vertex is n− 1.

Definition. A walk in a graph is a sequence of vertices and edges v1, e1, v2, e2, . . . , vk

such that ei ∈ E(vi, vi+1 for i = 1, . . . , k− 1.

The length of a walk is the number of edges in it, i.e., k − 1. We allow k = 0,
in which case the walk consists of a single vertex and no edges. A walk is closed
if the first and last vertices are the same, i.e., v1 = vk.

Definition. A trail in a graph is a walk in which all edges are distinct.

For example, the walk A, e1, B, e4, C , e6, A, e2, C is a trail in the first graph above.

Definition. A path in a graph is a walk in which all vertices (and hence all the
edges) are distinct.

Definition. A cycle in a graph is a closed walk in which all vertices are distinct,
except the first and the last, which are equal.

For example, the walk A, e1, B, e4, C , e6, A is a cycle in the first graph above.
There are also famous special type of trails and cycles:

• A circuit is a closed trail.

• A Eulerian circuit is a closed trail that visits every edge exactly once. A
graph is called Eulerian if it has an Eulerian circuit.

• A Hamiltonian cycle is a closed path that visits every vertex exactly once.
A graph is called Hamiltonian if it has a Hamiltonian cycle.

The name “Eulerian” comes from the mathematician Leonhard Euler, who studied
the famous problem of the Seven Bridges of Königsberg in 1736. It boils down to
the question of whether the graph below has an Eulerian circuit:

Here, the vertices are the land masses (top and bottom the two banks of the
Pregel river, left and right the islands Kneiphof and Lomse), and the edges are the
bridges. It turns out that there is no Eulerian circuit in this graph, because of the
following theorem:
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Theorem. An undirected connected graph has has an Eulerian circuit if and only if
every vertex has even degree.

A directed strongly connected graph has an Eulerian circuit if and only if every
vertex has equal in-degree and out-degree.

An undirected graph is connected if it is nonempty and there is a path between
any two vertices, and a directed graph is strongly connected if it is nonempty and
there is a (directed) path between any two vertices.

We don’t give the proof of the Eulerian circuit theorem, but it boils down to
the correctness of a greedy algorithm: Keep finding cycles (where all vertices have
even degree, viz. 2, until no edges remain; then glue the cycles together into a cir-
cuit). In contrast to Eulerian circuits, Hamiltonian cycles are much harder to find.
In fact, it is NP-complete to determine whether a given graph has a Hamiltonian
cycle.

7.1.3 Graph isomorphism

The same graph can be represented in many equivalent (isomorphic) ways. For
example, it doesn’t matter whether we use the set {0,1, 3,4, 5} or any other five
element to represent the complete graph on five vertices. More formally, we intro-
duce the notion of graph isomorphism:

Definition. An isomorphism between directed graphs (V, E), (V ′, E′) is a bijection
f : V → V ′ between the vertex sets together with, for each pair (v, w) of vertices
in V , a bijection gv,w : E(v, w)→ E′( f (v), f (w)).

For simple graphs, the condition on the edges can be simplified to saying that
f preserves the edge relation, i.e., maps connected vertices to connected vertices
in the sense that (v, w) ∈ E implies ( f (v), f (w)) ∈ E′.

Graphs provide a rich supply of difficult algorithmic problems in computer sci-
ence. For example, the graph isomorphism problem is to determine whether two
graphs are isomorphic. It is not known whether this problem is solvable in polyno-
mial time (feasibly computable with a bounded amount of resources), or whether
it is NP-complete (intractable). The subgraph isomorphism problem is to determine
whether a simple graph G contains another graph H as a subgraph, i.e., whether
there is an injection from the vertex set of H to the vertex set of G such that there
is an edge between two vertices in H if and only if there is an edge between the
corresponding vertices in G. This is NP-complete.

7.1.4 Adjacency matrices

The main connection between graph theory and linear algebra is that we can repre-
sent graphs without multiple edges as adjacency matrices. This works by ordering
the vertices as v1, v2, . . . , vn and forming the n×n matrix A whose i, j is one or zero,
depending on whether there is an edge from vi to v j. For example, for the graph
that began the section, if we relabel the vertices v1, v2, v3, v4, we get the graph,
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v1 v2

V3 v4

whose adjacency matrix is:







0 1 1 1
0 0 1 1
1 0 0 0
1 0 1 0






.

We can also accommodate graphs with multiple (yet finitely many) edges and
loops by using a weighted adjacency matrix, where the (i, j) entry is the number of
edges from vertex vi to vertex v j. For example, the adjacency matrix of the graph
we started this section with is:







0 2 1 1
0 0 1 1
1 0 0 0
1 0 1 1






.

Note, however, that we loose some information, by replacing the finite sets E(vi, v j)
with their size ai, j.

Not only are adjacency matrices a useful data structure for storing graphs, we
can even link matrix multiplication to graph theoretic features, e.g.:

Theorem. If A is the adjacency matrix of a (directed) graph G, the (i, j) entry of the
power matrix Ak is the number of walks of length k from vertex vi to vertex v j for all
k ≥ 0.

Proof. We prove this by induction on k. The base case is trivial, because the only
walk of length zero is the empty walk, which has length zero and starts and ends
at the same vertex. This matches A0 being the identity matrix.

For the inductive step, we can use the fact that a walk of length k + 1 from vi

to v j can be obtained by taking a walk of length k from vi to some vertex w, and
then taking an edge from w to v j.

We can also represent undirected graphs as adjacency matrices, by using sym-
metric matrices. These have real eigenvalues, and we can learn a lot about the
graph from the eigenvalues and eigenvectors. That is, however, is a topic for an-
other day.
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Adjacency matrices take on a special form when the graph is bipartite, i.e., the
vertex set can be partitioned into two sets V1 and V2 such that all edges connect a
vertex in V1 to a vertex in V2. In this case, the adjacency matrix can be written as
a block matrix:

�

0 A
B 0

�

,

where A is the adjacency matrix of edges going from V1 and V2, while B is that
of edges going from V2 to V1. For example, the complete bipartite graph on 3+ 3
vertices, i.e.,

has the symmetric adjacency matrix:














0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0















.

This is the smallest bipartite graph that is not planar, i.e., drawable in the plane
without intersecting edges. But that is a topic for another day.

7.2 Probability Theory

Objectives

1. Learn the basic framework for working with probabilities with finitely many
outcomes.

2. Recipe: calculate probabilities for events of interest.

3. Bayes’ Rule for conditional probability.

4. Vocabulary: sample space, outcome, event, false positive/negative, inde-
pendence, random variable, expectation
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7.2.1 Introduction: Monty Hall Problem

Lots of problems in computer science involve probabilities:

• Randomized (Monte Carlo) algorithms (for example in computer graphics)

• Machine learning and statistical modeling

• Cryptography and secure communication

• Network reliability and performance analysis

Most of these can be modeled using only finite sample spaces, i.e., there are only
finitely many possible outcomes. To get started, we will look at a simple problem
that is often misunderstood: the Monty Hall problem.

Suppose you are on a game show and are given the choice of three doors.
Behind one door is a car (electric, of course!); behind the others, goats. You pick a
door, say No. 1, and the host, who knows what’s behind the doors, opens another
door that has a goat, say No. 3. He then says to you, “Do you want to pick door
No. 2 instead?” What is the probability of getting the car if you stay and if you
switch?

Intuitively, it seems like the probability of getting the car is 1
2 if you stay and 1

2
if you switch. But this is wrong! The probability of getting the car if you stay is
1
3 and the probability of getting the car if you switch is 2

3 . The reason is that the
host’s action of opening a door gives you more information about the location of
the car. We can model this problem using a tree diagram.

car host opens

Door 3

Door 2

Door 1

Door 2

Door 3

Door 2

Door 3

1/3

1/3

1/3

1

1

1/2

1/2

probability

1/3

1/3

1/6

1/6

The tree diagram shows all possible outcomes of the game. The first level of
the tree shows the three possibilities for the car. The second level shows the host’s
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action of opening a door. The probabilities of the host’s action depend on the car’s
location. The host will always open a door with a goat behind it. The probabilities
of the host’s action are shown on the edges of the tree. There are four possible
outcomes of the game, listed by the leaves of the tree on the right. If you stay at
door No. 1, the probability of getting the car is 1

3 (the first two leaves), while if
you switch to the remaining closed door, the probability of getting the car is 2

3 (the
last two leaves). This is the correct answer to the Monty Hall problem.

With this example in mind, we can now introduce the basic concepts of prob-
ability theory.

7.2.2 Basic concepts

We will work with finite sample spaces, i.e., there are only finitely many possible
outcomes. The sample space S is the (finite) set of all possible outcomes of an
experiment. An event is a subset of the sample space. We get a probability space
by assigning a probability to each outcome in the sample space, i.e., a function
P : S → [0,1] such that

∑

s∈S P(s) = 1. The probability of an event A⊆ S is given
by P(A) =

∑

s∈A P(s). By assuming a total ordering on the sample space, we can
also represent the probabilities as a vector p = (P(s1), P(s2), . . . , P(sn)).

Theorem. The following are the basic laws of probability:

1. Non-negativity: For any event A, P(A)≥ 0.

2. Normalization: The probability of the entire sample space is 1, i.e., P(S) = 1.

3. Additivity: For any two mutually exclusive events A and B, i.e., A∩ B = ;, we
have P(A∪ B) = P(A) + P(B).

4. Complement Rule: For any event A, P(Ac) = 1− P(A), where Ac is the comple-
ment of A.

5. Inclusion-Exclusion Principle: For any two events A and B, P(A∪B) = P(A)+
P(B)− P(A∩ B).

Example. In a standard 52-card deck, a full house consists of three cards of one
rank and two cards of another rank. To calculate the probability of being dealt a
full house in a 5-card draw, we proceed as follows:

1. Choose the rank for the three cards. There are 13 ways to do this.

2. Choose 3 cards of that rank. There are
�4

3

�

= 4 ways to do this.

3. Choose the rank for the pair. There are 12 ways to do this (excluding the
rank already chosen).

4. Choose 2 cards of that rank. There are
�4

2

�

= 6 ways to do this.
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5. The total number of ways to get a full house is therefore 13 ·4 ·12 ·6= 3744.

6. The total number of 5-card hands is
�52

5

�

= 2598960.

7. Thus, the probability of being dealt a full house is 3744
2598960 ≈ 0.00144.

This means that the probability of being dealt a full house in a 5-card draw is
approximately 0.144

7.2.3 Conditional probability

In the Monty Hall problem, we saw the utility of conditional probabilities. Let
us now define this more formally: The conditional probability of an event A given
another event B is defined as: P(A|B) = P(A∩B)

P(B) , provided P(B) > 0. This is the
probability of A given that B has occurred. Another way to think about this is that
we are restricting our attention to the sample space B with the probability of B
normalized to 1.

Theorem. Bayes’ Rule relates the conditional probability of two events A and B:
P(A|B) = P(A)P(B|A)

P(B) , provided P(B)> 0.

Note that the rule makes sense even if P(A) = 0, since the right-hand side is
then 0.

Proof. As noted, we may assume P(A) > 0. To prove Bayes’ Rule, we start with
the definition of conditional probability: P(A|B) = P(A∩B)

P(B) .

Similarly, the conditional probability of B given A is: P(B|A) = P(A∩B)
P(A) .

Rearranging the second equation, we get: P(A∩ B) = P(A)P(B|A).
Substituting this into the first equation, we obtain: P(A|B) = P(A)P(B|A)

P(B) as de-
sired.

Example. Consider a medical test for a certain disease The sample space have four
elements, for whether the person has the disease or not, and whether the test is
positive or negative. Let:

• D represent the event that a person has the disease.

• ¬D represent the event that a person does not have the disease.

• T represent the event that the test result is positive.

• ¬T represent the event that the test result is negative.

Suppose the following probabilities are known:

• The prevalence of the disease: P(D) = 0.01.

• The sensitivity of the test (probability of a positive result given the person
has the disease): P(T |D) = 0.95.
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• The specificity of the test (probability of a negative result given the person
does not have the disease): P(¬T |¬D) = 0.90.

We are interested in the probability that a person has the disease given a posi-
tive test result, P(D|T ). Using Bayes’ rule, we have: P(D|T ) = P(T |D)P(D)

P(T ) .
To compute P(T ), we use the law of total probability: P(T ) = P(T |D)P(D) +

P(T |¬D)P(¬D).
Substituting the known values: P(T ) = (0.95)(0.01) + (1− 0.90)(1− 0.01) =

0.0095+ 0.099= 0.1085.
Now, substituting back into Bayes’ rule: P(D|T ) = (0.95)(0.01)

0.1085 ≈ 0.0876.
This means that even with a positive test result, the probability that the person

actually has the disease is only about 8.76

Definition. Two events A and B are said to be independent if the occurrence of one
does not affect the probability of the other. Formally, this means: P(A|B) = P(A)
or equivalently P(A∩ B) = P(A)P(B).

Example. Consider a hash function h used in a hash table. The hash function maps
keys to buckets, and we assume that the hash function distributes keys uniformly
and independently across the buckets.

Let:

• A represent the event that key k1 is mapped to bucket b.

• B represent the event that key k2 is mapped to bucket b.

Since the hash function is assumed to distribute keys independently, the events
A and B are independent. This means: P(A∩ B) = P(A)P(B).

For example, if there are n buckets, then P(A) = P(B) = 1
n , and P(A∩ B) =

1
n ·

1
n =

1
n2 .

This independence property is crucial for analyzing the performance of hash
tables, as it ensures that the probability of collisions (two keys being mapped to
the same bucket) can be computed accurately.

7.2.4 Random variables and expectation

A random variable (RV) is a function that assigns a real number to each outcome in
the sample space. Formally, a random variable is a function X : S → R that maps
outcomes in the sample space S to real numbers. Random variables are often
denoted by uppercase letters (e.g., X , Y ) and their values by lowercase letters
(e.g., x , y).

Probability mass functions (PMFs) fundamental tools for describing random
variables (RVs). The PMF of a random variable assigns a probability to each pos-
sible value of the RV: P(X = x) = P(Ax), where Ax = {s ∈ S | X (s) = x} is the set
of outcomes (i.e., the event) where X has the value x .

For example, the Bernoulli distribution models a single trial with two outcomes
(success has value 1 with probability p and failure has value 0 with probability
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1 − p). This has PMF P(X = x) = px(1 − p)1−x for x ∈ {0, 1}. The binomial
distribution generalizes this to n independent trials, with a PMF

P(X = k) =
�

n
k

�

pk(1− p)n−k

for k ∈ {0, 1, . . . , n}. The uniform distribution, on the other hand, assigns equal
probability to all outcomes in a finite sample space, with a PMF P(X = x) = 1

n for
x in the range of the random variable.

Definition. The expectation (or expected value) of a random variable X , denoted
E[X ], is a measure of the “average” value of X . For a discrete random variable on
the sample space S with probability function P, the expectation is defined as:

E[X ] =
∑

s∈S

X (s)P(s).

For example, if X is a random variable representing the outcome of rolling a
fair six-sided die, then the expectation is:

E[X ] =
6
∑

i=1

i · P(X = i) =
6
∑

i=1

i ·
1
6
=

1
6
(1+ 2+ 3+ 4+ 5+ 6) =

21
6
= 3.5.

This means that the average outcome of rolling the die is 3.5.
It’s often useful to rewrite the expectation in terms of the probability mass

function (PMF) of the random variable. The PMF gives the probability of each
possible outcome, and we can express the expectation as:

E[X ] =
∑

x

x · P(X = x).

Definition. Two random variables X and Y are said to be independent if the joint
probability distribution of X and Y factors into the product of their marginal dis-
tributions. Formally, this means: P(X = x , Y = y) = P(X = x)P(Y = y) for all
values x and y .

In other words, two random variables are independent if the events of them
taking on specific values are independent.

Theorem. The following properties hold for expectations:

1. Linearity of Expectation: For any random variables X and Y , E[X + Y ] =
E[X ] + E[Y ]. This holds regardless of whether X and Y are independent.

2. Law of Total Expectation: If X is a random variable and we have a partition
of the sample space S = A1 ∪ · · · ∪ Ak, then E[Y ] =

∑k
i=1 E[Y |Ai]P(Ai). (An

average can be calculated as an average of averages.)

3. Law of Iterated Expectation: If X , Y are random variables, then E[Y ] =
E[E[Y |X ]].



348 CHAPTER 7. GRAPHS AND PROBABILITY THEORY

4. Product of Independent Random Variables: If X and Y are independent ran-
dom variables, then E[X Y ] = E[X ]E[Y ].

Here there are two kinds of conditional expectation: E[Y |A] is the expected
value of Y restricted to the probability space determined by the event Awith P(A)>
0, i.e.,

E[Y |A] =
∑

s∈A

Y (s)
P(s)
P(A)

=
∑

y

yP(Y = y|A),

while E[Y |X ] is the expected value of Y given the value of X . It is defined as:

E[Y |X ] =
∑

s∈S

Y (s)P(s|X ) =
∑

y

yP(Y = y|X )

It is a random variable since it depends on X . More formally, we ought to write

E[Y |X = x] =
∑

y

yP(Y = y|X = x).

Note this also means that if X and Y are independent, then this further simplifies
as

E[Y |X = x] =
∑

y

yP(Y = y|X = x) =
∑

y

yP(Y = y) = E[Y ].

Thus, when X and Y are independent, we have E[Y |X ] = E[Y ].

Proof. 1. Linearity of Expectation: Let X and Y be random variables on the sample
space S. By the definition of expectation, we have:

E[X + Y ] =
∑

s∈S

(X (s) + Y (s))P(s) =
∑

s∈S

X (s)P(s) +
∑

s∈S

Y (s)P(s) = E[X ] + E[Y ].

1. Law of Total Expectation: Indeed, this boils down to the following calcula-
tion:

E[Y ] =
∑

s∈S

Y (s)P(s) =
k
∑

i=1

∑

s∈Ai

Y (s)P(s) =
k
∑

i=1

E[Y |Ai]P(Ai).

3. Law of Iterated Expectation: Now let X , Y be random variables. Suppose that
the range of X is {x1, . . . , xk}, giving a partition of the sample space S = A1∪· · ·∪Ak

where Ai = {s ∈ S|X (s) = x i}. Then by the above we can write the expectation of
Y as

E[Y ] =
k
∑

i=1

E[Y |X = x i]P(X = x i) = E[E[Y |X ]],

proving the law of total expectation.
3. Product of Independent Random Variables: Let X and Y be independent ran-

dom variables. Let’s use the law of total expectation: E[X Y ] = E[E[X Y |X ]]. The
inner expectation E[X Y |X ] (which, recall is a random variable depending on the
value x of X ) simplifies by our independence assumption:

E[X Y |X ] = X E[Y |X ] = X E[Y ].
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Now we can substitute this back, and take the expectation over X :

E[X Y ] =
∑

x

x E[Y ]P(X = x) = E[Y ]
∑

x

x P(X = x) = E[Y ]E[X ].

Thus E[X Y ] = E[X ]E[Y ], proving the product rule for independent random vari-
ables.

7.3 Discrete Dynamical Systems

Objectives

1. Understand how to convert word problems to matrix equations.

2. Learn how the eigenvalues and eigenvectors of a matrix A can be used to
describe the long-term behaviour of an associated discrete dynamical system.

3. Recipe:calculate the state vt of a discrete dynamical system at time t.

4. Picture: dynamics of a discrete dynamical system.

5. Vocabulary: difference equation, (linear) discrete dynamical system, sad-
dle point, attractor, repeller.

This section and the next are devoted to one common kind of application of
eigenvalues: to the study of discrete dynamical systems. The discrete dynamical
systems we study are linear discrete dynamical systems.

If f : Rn→ Rn is a transformation (not necessarily linear) and . . . , vi, vi+1, vi+2, . . .
is a sequence of vectors in Rn such that vi+1 = f (vi), then we say that f and the
sequence vi, vi+1, . . . make up a discrete dynamical system. The difference equa-
tions we study are special kinds of discrete dynamical system, the kind where f is
a linear transformation.

Before giving too many technical definitions, we consider an example:

Example. An electric scooter company has locations all over Nottingham, where
you can rent scooters. You can return them to any other location. For simplic-
ity, pretend that there are three locations, and that every customer returns their
scooter the next day. Let vt be the vector whose entries x t , yt , zt are the number of
scooters in locations 1,2, and 3, respectively. Let A be the matrix whose i, j-entry
is the probability that a customer renting a scooter from location j returns it to
location i. For example, the matrix

A=





.3 .4 .5

.3 .4 .3

.4 .2 .2




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encodes a 30% probability that a customer renting from location 3 returns the
scooter to location 2, and a 40% probability that a scooter rented from location 1
gets returned to location 3. The second row (for instance) of the matrix A says:

The number of scooters returned to location 2 will be (on average):

30% of the scooters from location 1

40% of the scooters from location 2

30% of the scooters from location 3

Applying this to all three rows, this means

A





x t

yt

zt



=





.3x t + .4yt + .5zt

.3x t + .4yt + .3zt

.4x t + .2yt + .2zt



 .

Therefore, Avt represents the number of scooters at each location the next day:

Avt = vt+1.

This is an example of a linear discrete dynamical system.

7.3.1 Discrete dynamical systems

Suppose that we are studying a system whose state at any given time can be de-
scribed by a list of numbers: for instance, the numbers of rabbits aged 0,1, and 2
years, respectively, or the number of customers of two different phone companies
in Canada. In each case, we can represent the state at time t by a vector vt . We
assume that t represents a discrete time quantity: in other words, vt is the state
“on day t” or “at year t”. Suppose in addition that the state at time t+1 is related
to the state at time t in a linear way: vt+1 = Avt for some matrix A. This is the
situation we will consider in this section.

Definition. A (first-order homogeneous) matrix difference equation is an equa-
tion of the form

vt+1 = Avt

where A is an n × n matrix. An initial condition is a vector v0 in Rn. Taken
together, the difference equation and the initial condition determine a sequence
of vectors v0, v1, v2, . . . such that vt+1 = Avt for all t. This is called a (linear)
discrete dynamical system.

In other words:

• vt is the “state at time t,”

• vt+1 is the “state at time t + 1,” and
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• vt+1 = Avt means that A is the “change of state matrix.”

Note that
vt = Avt−1 = A2vt−2 = · · ·= At v0,

which should hint to you that the long-term behavior of such a system is an eigen-
value problem.

Remark. A second-order matrix difference equation is one where there are two
matrices A and B and the equation

vt = Avt−1 + Bvt−2

holds for all t. An inhomogeneous (first order) matrix difference equation is one
where there is a constant vector c such that

vt = Avt−1 + c

holds for all t. We will not consider second- or higher-order or inhomogeneous
difference equations, or their associated discrete dynamical systems, in this book.

7.3.2 Long-term behaviour

An important question to ask about a dynamical system is: what is its long-term
behavior? How many scooters will be at each location after 100 days (assuming
no intervention from the business owner)? How many rabbits will there be in 20
years (and how many of them will be adults)? In this subsection, we will address
this kind of question.

Example (Rabbit population). In a population of rabbits,

1. half of the newborn rabbits survive their first year;

2. of those, half survive their second year;

3. the maximum life span is three years;

4. rabbits produce 0, 6, 8 rabbits in their first, second, and third years, respec-
tively.

Let vt be the vector whose entries x t , yt , zt are the number of rabbits aged 0,1,
and 2, respectively. The rules above can be written as a system of equations:

x t+1 = 6yt + 8zt

yt+1 =
1
2 x t

zt+1 =
1
2 yt .

In matrix form, this says:




0 6 8
1
2 0 0
0 1

2 0



 vt = vt+1.
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This forms a discrete dynamical system.
Define

A=





0 6 8
1
2 0 0
0 1

2 0



 .

We compute A has eigenvalues 2 and −1, and that an eigenvector with eigenvalue
2 is

v =





16
4
1



 .

This partially explains why the ratio x t : yt : zt approaches 16 : 4 : 1 and why all
three quantities eventually double each year in this demo:

Use this link to view the online demo

Left: the population of rabbits in a given year. Right: the proportions of rabbits in
that year. Choose any values you like for the starting population, and click “Advance
1 year” several times. Notice that the ratio x t : yt : zt approaches 16 : 4 : 1, and that
all three quantities eventually double each year.

Example (A Predator–Prey Model). There is a pond with two species: frogs and
midges. The frogs eat the midges. The population is counted once a year. We
measure frogs in hundreds (102), and midges in hundreds of thousands (105).

If it were not for the frogs, the midge population would increase by 30% each
year. We assume that each frog kills 500 midges each year. Equivalently, for each
100 frogs, the number of midges that gets eaten is (0.5)× 100,000.

The growth of the frog population is constrained by the availability of midges.
We assume that on average, for each 100,000 midges, 10 = 0.1 × 100 tadpoles
survive to become adult frogs each year. Finally, we need the death rate of the frog
population. It is 30%. That is, only 70% of the adult frogs this year survive until
next year.

We now show how this description leads directly to a difference equation
Let ft denote the number of frogs (in hundreds) after t years have passed, and

let mt denote the number of midges (in hundreds of thousands) after t years have
passed. Let

vt =
�

ft

mt

�

.

Then the text of the problem tells us that

ft+1 = 0.7 ft + 0.1mt

and
mt+1 = −0.5 ft + 1.3mt .

https://ulrikbuchholtz.dk/ila/demos/rabbits.html
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This can be written in matrix form:

vt+1 =
�

0.7 0.1
−0.5 1.3

�

vt .

Write

A=
�

0.7 0.1
−0.5 1.3

�

for later reference.
If v0 is the vector containing the population data for this year (midges and

frogs), then v1 = Av0 is the vector containing the population data for next year,
v2 = Av1 is the vector containing the population for the year after, and so on.

For example, if we calculate that there are 700 frogs and 9×105 midges in year
0, then we would record this as

v0 =
�

7
9

�

.

We could then calculate

v1 =
�

0.7 0.1
−0.5 1.3

��

7
9

�

=
�

5.8
8.2

�

and

v2 =
�

0.7 0.1
−0.5 1.3

��

5.8
8.2

�

=
�

4.88
7.76

�

.

This represents 488 frogs and 776,000 midges in year 2.
There are many questions one can ask about the model we have constructed.

Let us concentrate here on questions about long-term behaviour of the model. That
is, what happens in our model after a large number of years? In mathematical
notation, we want to know what vt looks like as t →∞.

In order to study vt , we start with the observation

vt = Avt−1 = AAvt−2 = · · ·=
t times
︷ ︸︸ ︷

AA . . . A v0.

This is to say that to get vt , you apply A to v0 a total of t times.
In Section 6.4 we saw that At is troublesome to calculate directly when t is

large, but it is easier to calculate if we diagonalize: A= C DC−1. In the case of the
frogs and midges:

�

0.7 0.1
−0.5 1.3

�

= A= C DC−1 =
�

1 1
5 1

��

1.2 0
0 0.8

��

−0.25 0.25
1.25 −0.25

�

.

This allows us to write down a computable formula for vt:

vt = C Dt C−1v0. (7.3.1)
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For instance, if we continue to suppose that v0 =
�

7
9

�

, then we calculate

vt =
�

ft

mt

�

=
�

1 1
5 1

��

1.2t 0
0 0.8t

��

−0.25 0.25
1.25 −0.25

��

7
9

�

=

=
�

1 1
5 1

��

1.2t 0
0 0.8t

��

0.5
6.5

�

=
�

1 1
5 1

��

(1.2)t(0.5)
(0.8)t(6.5)

�

=

=
�

1(1.2)t(0.5) + 1(0.8)t(6.5)
5(1.2)t(0.5) + 1(0.8)t(6.5)

�

.

(7.3.2)

Simply, the model predicts that the number of frogs (in hundreds) is given by

ft = 1(1.2)t(0.5) + 1(0.8)t(6.5)

and the number of midges (in hundreds of thousands) is given by

mt = 5(1.2)t(0.5) + 1(0.8)t(6.5).

What we asked about the system was the long-term behaviour. From this point
of view, the information in equation (7.3.2) was more than we needed. We know
from calculus that as t grows, the quantity (0.8)t tends to 0, whereas (1.2)t grows
without bound. This is good news for our frogs and midges, since it we calculate

lim
t→∞

ft = lim
t→∞

1(1.2)t(0.5) + lim
t→∞

1(0.8)t(6.5) =∞+ 0

and similarly for the midges limt→∞mt = ∞, so the model predicts that both
frogs and midges will thrive.

The model can also be used to predict the ratio of frogs to midges. This is a
standard kind of limit calculation

lim
t→∞

ft

mt
= lim

t→∞

1(1.2)t(0.5) + 1(0.8)t(6.5)
5(1.2)t(0.5) + 1(0.8)t(6.5)

=
1
5

.

This says that after several years have passed, the ratio of frogs to midges will be
approximately 100 frogs for each 500,000 midges, which we can simplify to 1 frog
for every 5,000 midges.

Warning. You can choose either ordering for the variables at the start of a question
like this. You can list the midges first and the frogs second, to get the system

vt =
�

mt

ft

�

, A=
�

1.3 −0.5
0.1 0.7

�

.

This describes the same model, so the formulas you would derive for mt and ft

would be the same.
It is extremely important to keep the same order throughout, however. Do not

mix up the order by writing frogs first sometimes and midges first other times.
This will lead to nonsense.

Similarly, in problems with more than two variables, you can choose any order
for the variables when you work it out. The important thing is to be consistent
throughout the problem.
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Writing the vectors in terms of eigenvectors An analysis such as we did for the
system of frogs and midges can be simplified and made more conceptual by con-
centrating on the role of eigenvectors in the story. Concentrating on eigenvectors
can also make the process of diagonalization less mysterious.

Suppose we have a discrete dynamical system

vt+1 = Avt

and an initial vector v0, then we can write

v1 = Av0, v2 = Av1 = A(Av0) = A2v0, . . . , vt =
t times
︷ ︸︸ ︷

A . . . Av0 = At v0.

The situation is simplest when v0 is an eigenvector of A, with eigenvalue λ. In
this case, the multiplication Av0 has the effect of stretching v0 by a factor of λ, so

that applying A t times to v0 results in scaling v0 by

t times
︷ ︸︸ ︷

λλ . . .λ= λt .

At v0 = λ
t v0

provided v0 is an eigenvector with eigenvalue λ.
The next best situation, which is the usual one, is when we can write v0 as a

linear combination of eigenvectors of A. Suppose w1, . . . , w j are eigenvectors of A
with associated eigenvalues λ1, . . . ,λ j. If

v0 = c1w1 + · · ·+ c jw j

for some coefficients c1, . . . , c j then

At v0 = c1At w1 + · · ·+ c jA
t w j = c1λ

t
1w1 + · · ·+ c jλ

t
j w j.

We can always find ourselves in this situation if A is diagonalizable, because we
can find an ordered basis for Rn made up of eigenvectors of A in this case. We
might even be able to write v as a linear combination of eigenvectors even if A is
not diagonalizable, but it’s not guaranteed.

From now on, we assume A is diagonalizable. Let

C =





| | |
w1 w2 . . . wn

| | |





be an invertible matrix where the columns are eigenvectors of A. We want to write

v0 = c1w1 + · · ·+ cnwn,

which is the same as solving the system of linear equations

v0 = C









c1

c2
...

cn








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so that we deduce that

C−1v0 =









c1

c2
...

cn









.

Having written v as a linear combination of eigenvectors, we can calculate vt:

vt = λ
t
1c1w1 +λ

t
2c2w2 + · · ·+λt

ncnwn.

Recipe: Calculating vt , the state at time t, for a discrete dynamical sys-
tem. If A and v0 determine a discrete dynamical system vt = At v0, and if A is
diagonalizable, then to calculate the vector vt

• Write
v0 = c1w1 + c2w2 + · · ·+ cnwn

where w1, w2, . . . , wn are eigenvectors of A with associated eigenvalues
λ1,λ2, . . . ,λn.

• Then
vt = c1λ

t
1w1 + c2λ

t
2w2 + · · ·+ cnλ

t
nwn.

Relating this procedure to diagonalization In this case we are taking the vec-
tors w1, w2, . . . , wn and are forming the combination with coefficients









λt
1c1

λt
2c2

...
λt

ncn









. (7.3.3)

You can check that if D denotes the diagonal matrix having λ1,λ2, . . . ,λn as diag-
onal entries, then the vector of coefficients (7.3.3) is calculated as Dt C−1v0. Then
to combine w1, w2, . . . , wn with these coefficients, we take the product C Dt C−1.
That is to say:

vt = C Dt C−1v0 = λ
t
1c1w1 +λ

t
2c2w2 + · · ·+λt

ncnwn.

Example (Frogs and midges, revisited). We look at the example of frogs and midge
again, this time using the eigenvectors of A extensively. Remember that

vt+1 = Avt , A=
�

0.7 0.1
−0.5 1.3

�

.
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Set v0 =
�

7
9

�

. We know A has eigenvector–eigenvalue pairs

w1 =
�

1
5

�

, λ1 = 1.2; w2 =
�

1
1

�

, λ2 = 0.8.

For later use, we set up a little more notation:

vt =
�

ft

mt

�

, C =
�

1 1
5 1

�

, D =
�

1.2 0
0 0.8

�

.

Write v0 in terms of eigenvectors of A:
�

7
9

�

= (0.5)
�

1
5

�

+ (6.5)
�

1
1

�

.

You can calculate these coefficients in many ways, of course, but one way is to do
the multiplication

C−1v0 =
�

0.5
6.5

�

.

We now know that

vt = (1.2)t(0.5)
�

1
5

�

+ (0.8)t(6.5)
�

1
1

�

, (7.3.4)

which is saying the same thing as

vt = C Dt C−1v0

in different notation. You can check by expanding out that (7.3.4) gives the same
information as (7.3.2).

Equation (7.3.4) is particularly useful for understanding the long-term be-
haviour of the model. As t grows larger, the coefficient (0.8)t tends to 0. This

means that as time goes by, the contribution of (0.8)t(6.5)
�

1
1

�

to vt becomes less

and less important, and the other summand, (1.2)t(0.5)
�

5
1

�

explains the long-

term behaviour of the model. For example, we can see directly from Equation
(7.3.4) that the ratio of ft (100s of frogs) to mt (100,000s of midges) tends to
1 : 5 as t →∞.

Use this link to view the online demo

A plot of the number of frogs and midges in each year after year 0. The x-coordinate
denotes 100s of frogs, and the y-coordinate denotes 100,000s of midges.

By moving the initial vector around in the figure above, you can see how the
long-term behaviour of the model depends on v0. For example, if v0 lies in the

https://ulrikbuchholtz.dk/ila/demos/dynamics3.html?mat=0.7,0.1:-0.5,1.3&v1=1,0&v2=0,1&vec=true&size=20&y=7,9&flow=false&matname=A&vecname=v
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eigenspace for 0.8, then the sequence v0, Av0, A2v0, . . . is attracted the origin. For
any other starting position, the vector v0 has some nonzero component in the 1.2-
eigenspace, and this component will determine the long-term behaviour, so that
v0, Av0, A2v0, . . . is eventually repelled by the origin. In a circumstance like this,
where the origin attracts along some directions and repels along others, the origin
is said to be a saddle point.

As a real-world matter, however, observe that moving v0 to the right has bad

consequences for the frogs and midges. If, for example, we move v0 to v0 =
�

8
5

�

,

then

v0 = −0.75
�

1
5

�

+ 7.25
�

1
1

�

so that applying the recipe gives us
�

ft

mt

�

= vt = (−0.75)(1.2)t
�

1
5

�

+ (7.25)(0.8)t
�

1
1

�

.

As t becomes larger, both ft and mt tend to −∞. This is an abstract mathematical
statement, and does not make sense for the frogs and midges. In the real world,
as soon as the number of midges reaches 0, the ecosystem will collapse and the
frogs and midges will all die.

Various kinds of long-term behaviour There is considerable diversity in how
discrete dynamial systems specified by vt+1 = Avt can behave, even when we re-
strict our attention to 2× 2 matrices. The following examples do not cover every
possibility, but they should be enough to give you the tools to understand every
case.

Example (Two different eigenvalues between 0 and 1). Suppose A is a diagonal-
izable 2× 2 matrix with two eigenvalues λ1,λ2, both of which satisfy 0 < λ < 1.
As before, a general v0 can be written as

v0 = c1w1 + c2w2

where w1, w2 are eigenvectors of A. We deduce that

vt = c1λ
t
1w1 + c2λ

t
2w2,

by use of the recipe. The sequence of vectors vt converges to the origin no matter
what initial vector is chosen. We say the origin is an attractor in this case.

Use this link to view the online demo

In this example, the eigenvalues of A are λ1 = 0.9 and λ2 = 0.4. We can write

down associated eigenvectors: w1 =
�

1
1

�

and w2 =
�

−1
1

�

. Both λ1 and λ2 satisfy

limn→∞λ
n = 0, and as a consequence, the origin is an attractor.

https://ulrikbuchholtz.dk/ila/demos/dynamics3.html?mat=0.6,0.2:0.3,0.7&v1=1,0&v2=0,1&vec=true&size=20&y=9,7&flow=false&matname=A&vecname=v
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A subtle point is that even though both eigenvalues are between 0 and 1,
nonetheless the larger of the two eigenvalues λ1 = 0.9 still influences how the
system behaves in the long run more than the smaller eigenvalue λ2 = 0.4 does.
If we write

v0 = c1w1 + c2w2 = c1

�

1
1

�

+ c2

�

−1
1

�

then

vt = c1

�

(0.9)t1
(0.9)t1

�

+ c2

�

(0.4)t(−1)
(0.4)t

�

=
�

c1(0.9)t − c2(0.4)t

c1(0.9)t + c2(0.4)t

�

.

The ratio between the first- and second-coordinate entries of vt is (as a fraction)

rt =
c1(0.9)t − c2(0.4)t

c1(0.9)t + c2(0.4)t
.

To see what happens as t →∞, we can do a limit calculation

lim
t→∞

rt = lim
t→∞

c1 − c2
(0.4)t

(0.9)t

c1 + c2
(0.4)t
(0.9)t

=
c1 − 0
c1 + 0

= 1

provided c1 ̸= 0.
This means that as t becomes larger and larger, the vector vt gets closer and

closer to the line spanned by w1 =
�

1
1

�

, unless v0 started out in the w2-eigenspace

(in this case, vt will lie in the w2-eigenspace for all values of t).

Example (Two different eigenvalues bigger than 1). The case of two eigenvalues
λ1, λ2 > 1 is similar to that of two eigenvalues 0 < λ < 1. The difference is that
the sequence v0, v1, . . . moves away from, rather than toward, the origin. In this
case, the origin is said to be a repeller.

Use this link to view the online demo

Example (A repeated eigenvalue, diagonal case). Here is an example where the
matrix A has two repeated eigenvalues and is diagonalizable

Use this link to view the online demo

In this case, the analysis of the model is particularly simple. Every nonzero
vector is an eigenvector for this A, since it has a 2-dimensional eigenspace. We
calculate that vt = At v0 = (1.5)t v0 for all t.

https://ulrikbuchholtz.dk/ila/demos/dynamics3.html?mat=1.92,-0.36:0.24,1.08&v1=1,0&v2=0,1&vec=true&size=20&y=-1.1,-4.3&flow=false&matname=A&vecname=v
https://ulrikbuchholtz.dk/ila/demos/dynamics3.html?mat=1.5,0:0,1.5&v1=1,0&v2=0,1&vec=true&size=20&y=1,-2&flow=false&matname=A&vecname=v
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Example (One eigenvalue equal to 1). In section Section 7.4, we will devote a lot
of attention to matrices where (exactly) one of the eigenvalues is 1.

Use this link to view the online demo

Example (A non-diagonalizable matrix). Here is an example where there is a re-
peated eigenvalue but the matrix is not diagonalizable. Analysis of discrete dy-
namical systems is harder than in the diagonalizable case. We will not say much
about it here.

Use this link to view the online demo

Possibly negative eigenvalues We have said nothing about cases where one or
both eigenvalues of A are negative. A negative eigenvalue λ1 < 0 causes the coef-
ficient of the corresponding eigenvector to switch signs from positive to negative
or back again every time A is applied.

With the exception that the negative eigenvalue or eigenvalues cause the vec-
tors v0, v1, v2, . . . to “jump” back and forth, the analysis of discrete dynamical sys-
tems with negative eigenvalues is very similar to that of positive eigenvalues.

There are three main cases for a 2×2-matrix A with two distinct real eigenval-
ues λ1,λ2

• Both of |λ1|, |λ2| are bigger than 0 but less than 1. In this case, the origin is
an attractor, which is to say the sequence v0, v1, v2, . . . will always approach
the origin.

• One of |λ1|, |λ2| is greater than 1, and the other is less than 1. In this case, the
origin is a saddle point, which is to say the sequence v0, v1, v2, . . . can go to-
wards the origin for a time, before heading away again (unless it approaches
exactly along the eigenspace for the eigenvalue of smaller magnitude).

• Both of |λ1|, |λ2| are greater than 1. In this case, the origin is a repeller, which
is to say the sequence v0, v1, v2, . . . will always go away from the origin.

Of course, this discussion leaves out a great many special cases. What if |λ1|=
1, or λ2 = 0? There are too many of these for it to be helpful for us to cover them
all, but by use of the recipe and a little calculus, you can study almost all of them.
The only case you might not be equipped to handle is that of a non-diagonalizable
matrix A.

Example (One positive, one negative eigenvalue). Here is a typical example with
one positive and one negative eigenvalue. Note that the magnitudes |λ1|< 1 and

https://ulrikbuchholtz.dk/ila/demos/dynamics3.html?mat=1,0.3:0,0.8&v1=1,0&v2=0,1&vec=true&size=20&y=4,-7&flow=false&matname=A&vecname=v
https://ulrikbuchholtz.dk/ila/demos/dynamics3.html?mat=1.2,-0.2:0.8,0.4&v1=1,0&v2=0,1&vec=true&size=20&y=4,-1&flow=false&matname=A&vecname=v
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1 < |λ2| imply the origin is a saddle point. The sequence v0, v1, v2, . . . goes off to
∞ along the λ2-eigenspace. Since λ1 is negative, the sequence keeps switching
from one side of this eigenspace to the other.

Use this link to view the online demo

−1< λ1 < 0 and 1< λ2

7.3.3 Discrete dynamical systems with complex eigenvalues

It can happen that a real matrix A has complex eigenvalues. The associated dy-
namical systems show spiralling behaviour.

Example (Complex eigenvalues). Suppose

A=
�

1.1 −0.1
0.1 1.1

�

.

In this case there are two complex-conjugate eigenvalues: λ1 =
11
10 +

i
10 and λ2 =

11
10 −

i
10 . They have associated eigenvectors

w1 =
�

i
1

�

and w2 =
�

−i
1

�

.

Use this link to view the online demo

Even though the eigenvalues and eigenvectors are not real-valued, we can still
carry out our usual calculations. For any given v0, we can decompose it as a linear
combination of eigenvectors for A. For instance

v0 =
�

−3
3

�

=
3+ 3i

2

�

i
1

�

+
3− 3i

2

�

−i
1

�

.

This allows us to write

vt =
�

11
10
+

i
10

�t 3+ 3i
2

�

i
1

�

+
�

11
10
−

i
10

�t 3− 3i
2

�

−i
1

�

.

You can verify that even though this calculation involves imaginary numbers, the
vector vt always has real entries.

Previously, we saw that magnitude of the eigenvalues, i.e., whether |λ| < 1
or |λ| > 1, had a big effect on the long-term behaviour of the model. The case
of complex eigenvalues is the same, with the important modification that we use

https://ulrikbuchholtz.dk/ila/demos/dynamics3.html?mat=1,1:1,0&v1=1,0&v2=0,1&vec=true&size=20&y=-3,2&flow=false&matname=A&vecname=v
https://ulrikbuchholtz.dk/ila/demos/dynamics3.html?mat=1.1,-0.1:0.1,1.1&v1=1,0&v2=0,1&vec=true&size=20&y=-3,3&flow=false&matname=A&vecname=v
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the complex absolute value to measure the magnitude of the eigenvalues. This
is discussed more fully in note.

We say that a sequence of complex numbers (z1, z2, . . . ) tends to infinity if the
sequence (|z1|, |z2|, . . . ) of positive real numbers keeps growing without bound. If
z is a complex number, then as t →∞

z t tends to

¨

infinity if |z|> 1

0 if |z|< 1.

If A is a real 2×2-matrix with non-real eigenvalues, λ1, λ2 = λ1, then there are
three possibilities for the long-term behaviour of the associated discrete dynamical
system.

• If |λ1| = |λ2| < 1, then the vectors v0, v1, v2, . . . will spiral inwards, towards
the origin, which is an attractor.

• If |λ1| = |λ2| = 1, then the vectors v0, v1, v2, . . . will move around the origin
in a periodic or quasi-periodic way, neither getting closer or farther away on
average.

• If |λ1| = |λ2| > 1, then the vectors v0, v1, v2, . . . will spiral outwards, away
from the origin, which is a repeller.

Example (Complex eigenvalues of modulus 1). Here is an example of a discrete
dynamical system where the eigenvalues are complex numbers satisfying |λ| = 1.
Observe the rotating behaviour.

Use this link to view the online demo

This system is not exactly periodic: there is no t > 0 such that vt = v0.

Example (A periodic discrete dynamical system). It is also possible to have a truly
periodic system. In the case illustrated, the matrix A satisfies the equation A7 = I2.
This means that the sequence v0, Av0, A2v0, . . . repeats itself every 7 terms.

Use this link to view the online demo

A discrete dynamical system of period 7

7.3.4 Discrete dynamical systems in more than 2 dimensions

The basic principles for discrete dynamical systems in more than 2 dimensions
remain the same as in 2 dimensions. As before, we will concentrate on the case
where A is diagonalizable.

https://ulrikbuchholtz.dk/ila/demos/dynamics3.html?mat=-3.06123569811873,-4.19535764538226:1.67814305815290,1.97319347633999&v1=1,0&v2=0,1&vec=true&size=10&y=-3,3&flow=false&matname=A&vecname=v
https://ulrikbuchholtz.dk/ila/demos/dynamics3.html?mat=-1.72200464554536,-3.90915741234015:1.56366296493606,2.9689842492628&v1=1,0&v2=0,1&vec=true&size=10&y=-3,3&flow=false&matname=A&vecname=v
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Even in the 3×3 case, there are many possibilities for how a discrete dynamical
system can behave. It would not be helpful to list every possibility here.

In general, if A is an n × n diagonalizable matrix, then we may find a basis
w1, . . . , wn that consists of eigenvectors of A, with associated eigenvaluesλ1, . . . ,λn.
Any initial state vector v0 can be written as

v0 = c1w1 + c2w2 + · · ·+ cnwn

and then
vt = At v0 = λ

t
1c1w1 +λ

t
2c2w2 + · · ·+λt

ncnwn.

Questions about the long-term behaviour can then be answered by using limit
arguments from calculus.

Note. We observe that for a matrix with real-number entries, non-real eigenvalues
come in conjugate pairs. It is not possible for a real-number 3× 3-matrix to have
three non-real eigenvalues.

Example (A 3-dimensional example). Consider the matrix A as in the figure below.
In this case, the matrix A has three eigenvalues

λ1 =
1+ 3i

10
, λ2 =

1− 3i
10

, λ3 = 2.

with associated eigenvectors

w1 =





1
−2

1− i



 , w2 =





1
−2

1+ i



 , w3 =





1
0
1



 ,

where w1 and w2 do not have real-number entries.

Use this link to view the online demo

A representation of a 3-dimensional discrete dynamical system

Any vector v0 can be written as a linear combination

v0 = c1w1 + c2w2 + c3w3

and so the vector vt = Av0 can be written as a sum of three vectors:

vt =
�

1+ 3i
10

�t

c1





1
−2

1− i



+
�

1− 3i
10

�t

c2





1
−2

1+ i



+ 2t c3





1
0
1



 .

As t →∞, the first two terms become smaller and smaller, because
�

�

�

�

1+ 3i
10

�

�

�

�

=

�

�

�

�

1− 3i
10

�

�

�

�

=
1
p

10

https://ulrikbuchholtz.dk/ila/demos/dynamics.html?mat=0.1,0.3:-0.3,0.1&eigenz=2&v1=0,0,1&v2=1,-2,1&v3=-1,0,1&vec=false&path=false
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while the last term takes over (provided c3 ̸= 0).
The long-term behaviour of v0, v1, v2, . . . in this system is to spiral in towards

the 2-eigenspace, the span of





1
0
1



, and to be repelled away from the origin along

this eigenspace.

7.4 Stochastic Matrices and the Steady State

Objectives

1. Learn examples of stochastic matrices and applications to difference equa-
tions.

2. Recipe: find the steady state of a positive stochastic matrix.

3. Picture: dynamics of a positive stochastic matrix.

4. Theorem: the Perron–Frobenius theorem.

5. Vocabulary: difference equation, (positive) stochastic matrix, steady state,
importance matrix, Google matrix.

7.4.1 An eigenvalue of 1

If a discrete dynamical system vt+1 = Avt is such that A has an eigenvalue of 1,
then something interesting happens. If vt happens to be an eigenvector for the
eigenvalue 1, then

vt+1 = Avt = vt , vt+2 = Avt+1 = Avt = vt , . . . .

That is, if the state vt of the system is ever an eigenvector for the eigenvalue 1,
then the system will stay in that state forever. The state vt is said to be a steady
state for the system.

A common occurrence is when A is diagonalizable, has the eigenvalue 1 and
when every other eigenvalue of A satisfies |λ| < 1. In this case, the long-term
behaviour of the system will be to converge to a steady state.

Example. Here is an example that appeared in Section 7.3. The matrix is A =
�

1 0.3
0 0.8

�

and the initial state is v0 =
�

4
−7

�

.
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The eigenvalues of A are 1 and 0.8. It is an upper-triangular matrix, which

makes this calculation quick. An eigenvector for 1 can be found: w1 =
�

1
0

�

, and

an eigenvector for 0.8 is w2 =
�

−3
2

�

.

Now, let’s write v0 as a linear combination of w1, w2:
�

4
−7

�

= −
13
2

�

1
0

�

−
7
2

�

−3
2

�

.

Using the recipe in Section 7.3, we can calculate the general term

vt = −
13
2
(1)t

�

1
0

�

−
7
2
(0.8)t

�

−3
2

�

.

Because of the special property of the number 1, this simplifies a little to

vt = −
13
2

�

1
0

�

−
7
2
(0.8)t

�

−3
2

�

,

and as t →∞, the quantity (0.8)t tends to 0. This means that as time passes, the
state of the system converges to

lim
t→∞

vt = −
13
2

�

1
0

�

.

7.4.2 Probabilities

In this subsection, we discuss difference equations representing probabilities, like
the scooter rental example in Section 7.3. Such systems are called Markov chains.
The most important result in this section is the Perron–Frobenius theorem, which
describes the long-term behavior of a Markov chain.

Note. Not every example of a discrete dynamical system with an eigenvalue of 1
arises from a Markov chain. For instance, the example in Section 7.3 does not.

Definition. A square matrix A is stochastic if all of its entries are nonnegative,
and the entries of each column sum to 1.

A matrix is positive if all of its entries are positive numbers.

A positive stochastic matrix is a stochastic matrix whose entries are all positive
numbers. In particular, no entry is equal to zero. For instance, the first matrix
below is a positive stochastic matrix, and the second is not:





.3 .4 .5

.3 .4 .3

.4 .2 .2









1 0 0
0 1 0
0 0 1



 .
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Remark. More generally, a regular stochastic matrix is a stochastic matrix A such
that An is positive for some n ≥ 1. The Perron–Frobenius theorem below also
applies to regular stochastic matrices.

Example. Continuing with the scooter rental example in Section 7.3, the matrix

A=





.3 .4 .5

.3 .4 .3

.4 .2 .2





is a positive stochastic matrix. The fact that the columns sum to 1 says that all
of the scooters rented from a particular location must be returned to some other
location (remember that every customer returns the scooter the next day). For
instance, the first column says:

Of the scooters rented from location 1,

30% will be returned to location 1

30% will be returned to location 2

40% will be returned to location 3.

The sum is 100%, as all of the scooters are returned to one of the three
locations.

The matrix A represents the change of state from one day to the next:




x t+1

yt+1

zt+1



= A





x t

yt

zt



=





.3x t + .4yt + .5zt

.3x t + .4yt + .3zt

.4x t + .2yt + .2zt



 .

If we sum the entries of vt+1, we obtain

(.3x t + .4yt + .5zt) + (.3x t + .4yt + .3zt) + (.4x t + .2yt + .2zt)
= (.3+ .3+ .4)x t + (.4+ .4+ .2)yt + (.5+ .3+ .2)zt

= x t + yt + zt .

This says that the total number of scooters in the three locations does not change
from day to day, as we expect.

The fact that the entries of the vectors vt and vt+1 sum to the same number is
a consequence of the fact that the columns of a stochastic matrix sum to 1.

Let A be a stochastic matrix, let vt be a vector, and let vt+1 = Avt . Then the
sum of the entries of vt equals the sum of the entries of vt+1.

The eigenvalues of stochastic matrices have very special properties.
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Fact. Let A be a stochastic matrix. Then:

1. 1 is an eigenvalue of A.

2. If λ is a (real or complex) eigenvalue of A, then |λ| ≤ 1.

Proof. If A is stochastic, then the rows of AT sum to 1. But multiplying a matrix by
the vector (1, 1, . . . , 1) sums the rows:





.3 .3 .4

.4 .4 .2

.5 .3 .2









1
1
1



=





.3+ .3+ .4

.4+ .4+ .2

.5+ .3+ .2



=





1
1
1



 .

Therefore, 1 is an eigenvalue of AT . But A and AT have the same characteristic
polynomial:

det(A−λIn) = det
�

(A−λIn)
T
�

= det(AT −λIn).

Therefore, 1 is an eigenvalue of A.
Now let λ be any eigenvalue of A, so it is also an eigenvalue of AT . Let x =

(x1, x2, . . . , xn) be an eigenvector of AT with eigenvalue λ, so λx = AT x . The jth
entry of this vector equation is

λx j =
n
∑

i=1

ai j x i.

Choose x j with the largest absolute value, so |x i| ≤ |x j| for all i. Then

|λ| · |x j|=

�

�

�

�

�

n
∑

i=1

ai j x i

�

�

�

�

�

≤
n
∑

i=1

ai j · |x i| ≤
n
∑

i=1

ai j · |x j|= 1 · |x j|,

where the last equality holds because
∑n

i=1 ai j = 1. This implies |λ| ≤ 1.

In fact, for a positive stochastic matrix A, one can show that if λ ̸= 1 is a (real
or complex) eigenvalue of A, then |λ|< 1. The 1-eigenspace of a stochastic matrix
is very important.

Definition. Recall that a steady state of a difference equation vt+1 = Avt is an
eigenvector w with eigenvalue 1. If we are talking about stochastic matrices in
particular, then we will further require that the entries of the steady-state vector
are normalized so that the entries are non-negative and sum to 1.

The Perron–Frobenius theorem describes the long-term behavior of a difference
equation represented by a stochastic matrix. Its proof is beyond the scope of this
text.

Perron–Frobenius Theorem. Let A be a positive stochastic matrix. Then A admits
a unique normalized steady state vector w, which spans the 1-eigenspace.

Moreover, for any vector v0 with entries summing to some number c, the iterates

v1 = Av0, v2 = Av1, . . . , vt = Avt−1, . . .

approach cw as t gets large.
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Translation: The Perron–Frobenius theorem makes the following assertions:

• The 1-eigenspace of a positive stochastic matrix is a line.

• The 1-eigenspace contains a vector with positive entries.

• All vectors approach the 1-eigenspace upon repeated multiplication by A.

One should think of a steady state vector w as a vector of percentages. For example,
if the movies are distributed according to these percentages today, then they will
be have the same distribution tomorrow, since Aw= w. And no matter the starting
distribution of movies, the long-term distribution will always be the steady state
vector.

The sum c of the entries of v0 is the total number of things in the system being
modeled. The total number does not change, so the long-term state of the system
must approach cw: it is a multiple of w because it is contained in the 1-eigenspace,
and the entries of cw sum to c.

Recipe 1: Compute the steady state vector. Let A be a positive stochastic
matrix. Here is how to compute the steady-state vector of A.

1. Find any eigenvector v of A with eigenvalue 1 by solving (A− In)v = 0.

2. Divide v by the sum of the entries of v to obtain a normalized vector w
whose entries sum to 1.

3. This vector automatically has positive entries. It is the unique normal-
ized steady-state vector for the stochastic matrix.

The above recipe is suitable for calculations by hand, but it does not take ad-
vantage of the fact that A is a stochastic matrix. In practice, it is generally faster
to compute a steady state vector by computer as follows:

Recipe 2: Approximate the steady state vector by computer. Let A be a
positive stochastic matrix. Here is how to approximate the steady-state vector
of A with a computer.

1. Choose any vector v0 whose entries sum to 1 (e.g., a standard coordinate
vector).

2. Compute v1 = Av0, v2 = Av1, v3 = Av2, etc.

3. These converge to the steady state vector w.

Example (A 2× 2 stochastic matrix). Consider the positive stochastic matrix

A=
�

3/4 1/4
1/4 3/4

�

.
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This matrix has characteristic polynomial

f (λ) = λ2 − Tr(A)λ+ det(λ) = λ2 −
3
2
λ+

1
2
= (λ− 1)(λ− 1/2).

Notice that 1 is strictly greater than the other eigenvalue, and that it has algebraic
(hence, geometric) multiplicity 1. We compute eigenvectors for the eigenvalues
1,1/2 to be, respectively,

u1 =
�

1
1

�

u2 =
�

1
−1

�

.

The eigenvector u1 necessarily has positive entries; the steady-state vector is

w=
1

1+ 1

�

1
1

�

=
1
2

�

1
1

�

=
�

50%
50%

�

.

The Perron–Frobenius theorem asserts that, for any vector v0, the vectors v1 =
Av0, v2 = Av1, . . . approach a vector whose entries are the same: 50% of the sum
will be in the first entry, and 50% will be in the second.

We can see this explicitly, as follows. The eigenvectors u1, u2 form a basis B for
R2; for any vector x = a1u1 + a2u2 in R2, we have

Ax = A(a1u1 + a2u2) = a1Au1 + a2Au2 = a1u1 +
a2

2
u2.

Iterating multiplication by A in this way, we have

At x = a1u1 +
a2

2t
u2 −→ a1u1

as t →∞. This shows that At x approaches

a1u1 =
�

a1

a1

�

.

Note that the sum of the entries of a1u1 is equal to the sum of the entries of a1u1+
a2u2, since the entries of u2 sum to 0.

To illustrate the theorem with numbers, let us choose a particular value for u0,
say u0 =

�1
0

�

. We compute the values for ut =
�x t

yt

�

in this table:

t x t yt

0 1.000 0.000
1 0.750 0.250
2 0.625 0.375
3 0.563 0.438
4 0.531 0.469
5 0.516 0.484
6 0.508 0.492
7 0.504 0.496
8 0.502 0.498
9 0.501 0.499

10 0.500 0.500
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We see that ut does indeed approach
�0.5

0.5

�

.
Now we turn to visualizing the dynamics of (i.e., repeated multiplication by)

the matrix A. This matrix is diagonalizable; we have A= C DC−1 for

C =
�

1 1
1 −1

�

D =
�

1 0
0 1/2

�

.

The matrix D leaves the x-coordinate unchanged and scales the y-coordinate by
1/2. Repeated multiplication by D makes the y-coordinate very small, so it “sucks
all vectors into the x-axis.”

The matrix A does the same thing as D, but with respect to the coordinate
system defined by the columns u1, u2 of C . This means that A “sucks all vectors
into the 1-eigenspace”, without changing the sum of the entries of the vectors.

Use this link to view the online demo

Dynamics of the stochastic matrix A. Click “multiply” to multiply the colored points
by D on the left and A on the right. Note that on both sides, all vectors are “sucked
into the 1-eigenspace” (the red line).

Example. Continuing with the scooter rental example, we can illustrate the Per-
ron–Frobenius theorem explicitly. The matrix

A=





.3 .4 .5

.3 .4 .3

.4 .2 .2





has characteristic polynomial

f (λ) = −λ3 + 0.12λ− 0.02= −(λ− 1)(λ+ 0.2)(λ− 0.1).

Notice that 1 is strictly greater in absolute value than the other eigenvalues, and
that it has algebraic (hence, geometric) multiplicity 1. We compute eigenvectors
for the eigenvalues 1,−0.2, 0.1 to be, respectively,

u1 =





7
6
5



 u2 =





−1
0
1



 u3 =





1
−3

2



 .

The eigenvector u1 necessarily has positive entries; the steady-state vector is

w=
1

7+ 6+ 5
u1 =

1
18





7
6
5



 .

https://ulrikbuchholtz.dk/ila/demos/dynamics2.html?mat=1,0:0,1/2&v1=1,1&v2=1,-1&vec=false&path=false
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The eigenvectors u1, u2, u3 form a basis B for R3; for any vector x = a1u1 + a2u2 +
a3u3 in R3, we have

Ax = A(a1u1 + a2u2 + a3u3)
= a1Au1 + a2Au2 + a3Au3

= a1u1 − 0.2a2u2 + 0.1a3u3.

Iterating multiplication by A in this way, we have

At x = a1u1 − (0.2)t a2u2 + (0.1)t a3u3 −→ a1u1

as t → ∞. This shows that At x approaches a1u1, which is an eigenvector with
eigenvalue 1, as guaranteed by the Perron–Frobenius theorem.

What do the above calculations say about the number of scooters in the rental
locations? Suppose that the locations start with 100 total scooters, with 30 scoot-
ers at location 1, 50 scooters at location 2, and 20 scooters at location 3. Let
v0 = (30,50, 20) be the vector describing this state. Then there will be v1 = Av0

scooters at the locations the next day, v2 = Av1 the day after that, and so on. We
let vt = (x t , yt , zt).

t x t yt zt

0 30.000000 50.000000 20.000000
1 39.000000 35.000000 26.000000
2 38.700000 33.500000 27.800000
3 38.910000 33.350000 27.740000
4 38.883000 33.335000 27.782000
5 38.889900 33.333500 27.776600
6 38.888670 33.333350 27.777980
7 38.888931 33.333335 27.777734
8 38.888880 33.333333 27.777786
9 38.888891 33.333333 27.777776
10 38.888889 33.333333 27.777778

(Of course it does not make sense to have a fractional number of scooters; the
decimals are included here to illustrate the convergence.) The steady-state vector
says that eventually, the scooters will be distributed in the kiosks according to the
percentages

w=
1

18





7
6
5



=





38.888888%
33.333333%
27.777778%



 ,

which agrees with the above table. Moreover, this distribution is independent of
the beginning distribution of scooters at locations.

Now we turn to visualizing the dynamics of (i.e., repeated multiplication by)
the matrix A. This matrix is diagonalizable; we have A= C DC−1 for

C =





7 −1 1
6 0 −3
5 1 2



 D =





1 0 0
0 −.2 0
0 0 .1



 .
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The matrix D leaves the x-coordinate unchanged, scales the y-coordinate by−1/5,
and scales the z-coordinate by 1/10. Repeated multiplication by D makes the y-
and z-coordinates very small, so it “sucks all vectors into the x-axis.”

The matrix A does the same thing as D, but with respect to the coordinate
system defined by the columns u1, u2, u3 of C . This means that A “sucks all vectors
into the 1-eigenspace”, without changing the sum of the entries of the vectors.

Use this link to view the online demo

Dynamics of the stochastic matrix A. Click “multiply” to multiply the colored points
by D on the left and A on the right. Note that on both sides, all vectors are “sucked
into the 1-eigenspace” (the green line). (We have scaled C by 1/4 so that vectors have
roughly the same size on the right and the left. The “jump” that happens when you
press “multiply” is a negation of the −.2-eigenspace, which is not animated.)

The picture of a positive stochastic matrix is always the same, whether or not
it is diagonalizable: all vectors are “sucked into the 1-eigenspace,” which is a line,
without changing the sum of the entries of the vectors. This is the geometric
content of the Perron–Frobenius theorem.

7.4.3 Google’s PageRank Algorithm

Internet searching in the 1990s was very inefficient. Yahoo or AltaVista would
scan pages for your search text, and simply list the results with the most occur-
rences of those words. Not surprisingly, the more unsavory websites soon learned
that by putting the words “Alanis Morissette” a million times in their pages, they
could show up first every time an angsty teenager tried to find Jagged Little Pill on
Napster.

Larry Page and Sergey Brin invented a way to rank pages by importance. They
founded Google based on their algorithm. Here is roughly how it works.

Each web page has an associated importance, or rank. This is a positive num-
ber. This rank is determined by the following rule.

The Importance Rule. If a page P links to n other pages Q1,Q2, . . . ,Qn, then each
page Q i inherits 1

n of P ’s importance.

In practice, this means:

• If a very important page links to your page (and not to a zillion other ones
as well), then your page is considered important.

• If a zillion unimportant pages link to your page, then your page is still im-
portant.

• If only one unknown page links to yours, your page is not important.

https://ulrikbuchholtz.dk/ila/demos/dynamics2.html?mat=1,0:0,-1/5&eigenz=1/10&v1=7/4,6/4,5/4&v2=-1/4,0,1/4&v3=1/4,-3/4,2/4&vec=false&path=false
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Alternatively, there is the random surfer interpretation. A “random surfer” just sits
at his computer all day, randomly clicking on links. The pages he spends the most
time on should be the most important. So, the important (high-ranked) pages are
those where a random surfer will end up most often. This measure turns out to be
equivalent to the rank.

The Importance Matrix. Consider an internet with n pages. The importance
matrix is the n× n matrix A whose i, j-entry is the importance that page j passes
to page i.

Observe that the importance matrix is a stochastic matrix, assuming every page
contains a link: if page i has m links, then the ith column contains the number
1/m, m times, and the number zero in the other entries.

Example. Consider the following internet with only four pages. Links are indi-
cated by arrows.

A B

C D

1
3

1
3

1
3

1
2

1
21

1
2

1
2

The importance rule says:

• Page A has 3 links, so it passes 1
3 of its importance to pages B, C , D.

• Page B has 2 links, so it passes 1
2 of its importance to pages C , D.

• Page C has one link, so it passes all of its importance to page A.

• Page D has 2 links, so it passes 1
2 of its importance to pages A, C .

In terms of matrices, if v = (a, b, c, d) is the vector containing the ranks a, b, c, d
of the pages A, B, C , D, then









0 0 1 1
2

1
3 0 0 0
1
3

1
2 0 1

2
1
3

1
2 0 0















a
b
c
d






=









c + 1
2 d

1
3 a
1
3 a + 1

2 b + 1
2 d

1
3 a + 1

2 b









=







a
b
c
d






.

The matrix on the left is the importance matrix, and the final equality expresses
the importance rule.
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The above example illustrates the key observation.

Key Observation. The rank vector is an eigenvector of the importance matrix
with eigenvalue 1.

In light of the key observation, we would like to use the Perron–Frobenius
theorem to find the rank vector. Unfortunately, the importance matrix is not always
a positive stochastic matrix.

Example (A page with no links). Consider the following internet with three pages:

A

C

B

1

1

The importance matrix is




0 0 0
0 0 0
1 1 0



 .

This has characteristic polynomial

f (λ) = det





−λ 0 0
0 −λ 0
1 1 −λ



= −λ3.

So 1 is not an eigenvalue at all: there is no rank vector! The importance matrix is
not stochastic because the page C has no links.

Example (Disconnected Internet). Consider the following internet:

D

A B C

E

1

1

1
2

1
2

1
2

1
2

1
2

1
2
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The importance matrix is











0 1 0 0 0
1 0 0 0 0
0 0 0 1

2
1
2

0 0 1
2 0 1

2
0 0 1

2
1
2 0











.

This has linearly independent eigenvectors











1
1
0
0
0











and











0
0
1
1
1











,

both with eigenvalue 1. So there is more than one rank vector in this case. Here
the importance matrix is stochastic, but not positive.

Here is Page and Brin’s solution. First we fix the importance matrix by replacing
each zero column with a column of 1/ns, where n is the number of pages:

A=





0 0 0
0 0 0
1 1 0



 becomes A′ =





0 0 1/3
0 0 1/3
1 1 1/3



 .

The modified importance matrix A′ is always stochastic.
Now we choose a number p in (0,1), called the damping factor. (A typical

value is p = 0.15.)

The Google Matrix. Let A be the importance matrix for an internet with n pages,
and let A′ be the modified importance matrix. The Google Matrix is the matrix

M = (1− p) · A′ + p · B where B =
1
n









1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1









.

In the random surfer interpretation, this matrix M says: with probability p,
our surfer will surf to a completely random page; otherwise, he’ll click a random
link on the current page, unless the current page has no links, in which case he’ll
surf to a completely random page in either case.

The reader can verify the following important fact.

Fact. The Google Matrix is a positive stochastic matrix.
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If we declare that the ranks of all of the pages must sum to 1, then we find:

The 25 Billion Dollar Eigenvector. The PageRank vector is the steady state
of the Google Matrix.

This exists and has positive entries by the Perron–Frobenius theorem. The hard
part is calculating it: in real life, the Google Matrix has zillions of rows.

Example. What is the PageRank vector for the following internet? (Use the damp-
ing factor p = 0.15.)

A B

C D

1
3

1
3

1
3

1
2

1
2

1
2

1
2

Which page is the most important? Which is the least important?

Solution. First we compute the modified importance matrix:

A=









0 0 0 1
2

1
3 0 0 0
1
3

1
2 0 1

2
1
3

1
2 0 0









modify
−−−→ A′ =









0 0 1
4

1
2

1
3 0 1

4 0
1
3

1
2

1
4

1
2

1
3

1
2

1
4 0









Choosing the damping factor p = 0.15, the Google Matrix is

M =0.85 ·









0 0 1
4

1
2

1
3 0 1

4 0
1
3

1
2

1
4

1
2

1
3

1
2

1
4 0









+ 0.15 ·







1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4







≈







0.0375 0.0375 0.2500 0.4625
0.3208 0.0375 0.2500 0.0375
0.3208 0.4625 0.2500 0.4625
0.3208 0.4625 0.2500 0.0375






.

The PageRank vector is the steady state:

w≈







0.2192
0.1752
0.3558
0.2498






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This is the PageRank:

.22 .18

.35 .25

1
3

1
3

1
3

1
2

1
2

1
2

1
2

Page C is the most important, with a rank of 0.3558, and page B is the least
important, with a rank of 0.1752.
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Chapter 8

Orthogonality

Let us recall one last time the structure of this book:

1. Solve the matrix equation Ax = b.

2. Solve the matrix equation Ax = λx , where λ is a number.

3. Approximately solve the matrix equation Ax = b.

We have now come to the third part.

Primary Goal. Approximately solve the matrix equation Ax = b.

Finding approximate solutions of equations generally requires computing the
closest vector on a subspace to a given vector. This becomes an orthogonality
problem: one needs to know which vectors are perpendicular to the subspace.

closest point

x

First we will define orthogonality and learn to find orthogonal complements of
subspaces in Section 8.1 and Section 8.2. The core of this chapter is Section 8.3,
in which we discuss the orthogonal projection of a vector onto a subspace; this is
a method of calculating the closest vector on a subspace to a given vector. These
calculations become easier in the presence of an orthogonal set, as we will see
in Section 8.4. In Section 8.5 we will present the least-squares method of ap-
proximately solving systems of equations, and we will give applications to data
modeling.

379
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Example. In data modeling, one often asks: “what line is my data supposed to lie
on?” This can be solved using a simple application of the least-squares method.

Example. Gauss invented the method of least squares to find a best-fit ellipse: he
correctly predicted the (elliptical) orbit of the asteroid Ceres as it passed behind
the sun in 1801.

8.1 Dot Products and Orthogonality

Objectives
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1. Understand the relationship between the dot product, length, and distance.

2. Understand the relationship between the dot product and orthogonality.

3. Vocabulary: dot product, length, distance, unit vector, unit vector in the
direction of x .

4. Essential vocabulary: orthogonal.

In this chapter, it will be necessary to find the closest point on a subspace to a
given point, like so:

closest point

x

The closest point has the property that the difference between the two points is
orthogonal, or perpendicular, to the subspace. For this reason, we need to develop
notions of orthogonality, length, and distance.

8.1.1 The Dot Product

The basic construction in this section is the dot product, which measures angles
between vectors and computes the length of a vector.

Definition. The dot product of two vectors x , y in Rn is

x · y =









x1

x2
...

xn









·









y1

y2
...

yn









= x1 y1 + x2 y2 + · · ·+ xn yn.

Thinking of x , y as column vectors, this is the same as x T y .

For example,




1
2
3



 ·





4
5
6



=
�

1 2 3
�





4
5
6



= 1 · 4+ 2 · 5+ 3 · 6= 32.

Notice that the dot product of two vectors is a scalar.
You can do arithmetic with dot products mostly as usual, as long as you re-

member you can only dot two vectors together, and that the result is a scalar.
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Properties of the Dot Product. Let x , y, z be vectors in Rn and let c be a scalar.

1. Commutativity: x · y = y · x .

2. Distributivity with addition: (x + y) · z = x · z + y · z.

3. Distributivity with scalar multiplication: (cx) · y = c(x · y).

The dot product of a vector with itself is an important special case:








x1

x2
...

xn









·









x1

x2
...

xn









= x2
1 + x2

2 + · · ·+ x2
n.

Therefore, for any vector x , we have:

• x · x ≥ 0

• x · x = 0 ⇐⇒ x = 0.

This leads to a good definition of length.

Fact. The length of a vector x in Rn is the number

∥x∥=
p

x · x =
q

x2
1 + x2

2 + · · ·+ x2
n.

It is easy to see why this is true for vectors in R2, by the Pythagorean theorem.

�

3
4

�

p 3
2 +

4
2 =

5

3

4













�

3
4

�













=
p

32 + 42 = 5

For vectors in R3, one can check that ∥x∥ really is the length of x , although
now this requires two applications of the Pythagorean theorem.

Note that the length of a vector is the length of the arrow; if we think in terms
of points, then the length is its distance from the origin.
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Example. Suppose that ∥x∥= 2, ∥y∥= 3, and x · y = −4. What is ∥2x + 3y∥?

Solution. We compute

∥2x + 3y∥2 = (2x + 3y) · (2x + 3y)
= 4x · x + 6x · y + 6x · y + 9y · y
= 4∥x∥2 + 9∥y∥2 + 12x · y
= 4 · 4+ 9 · 9− 12 · 4= 49.

Hence ∥2x + 3y∥=
p

49= 7.

Fact. If x is a vector and c is a scalar, then ∥cx∥= |c| · ∥x∥.

This says that scaling a vector by c scales its length by |c|. For example,












�

6
8

�













=













2
�

3
4

�













= 2













�

3
4

�













= 10.

Now that we have a good notion of length, we can define the distance between
points in Rn. Recall that the difference between two points x , y is naturally a
vector, namely, the vector y − x pointing from x to y .

Definition. The distance between two points x , y in Rn is the length of the vector
from x to y:

dist(x , y) = ∥y − x∥.

Example. Find the distance from (1,2) to (4, 4).

Solution. Let x = (1,2) and y = (4,4). Then

dist(x , y) = ∥y − x∥=












�

3
2

�













=
p

32 + 22 =
p

13.

0

x

y

y −
x

Vectors with length 1 are very common in applications, so we give them a name.
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Definition. A unit vector is a vector x with length ∥x∥=
p

x · x = 1.

The standard coordinate vectors e1, e2, e3, . . . are unit vectors:

∥e1∥=























1
0
0























=
p

12 + 02 + 02 = 1.

For any nonzero vector x , there is a unique unit vector pointing in the same direc-
tion. It is obtained by dividing by the length of x .

Fact. Let x be a nonzero vector in Rn. The unit vector in the direction of x is the
vector x/∥x∥.

This is in fact a unit vector (noting that ∥x∥ is a positive number, so
�

�1/∥x∥
�

�=
1/∥x∥):













x
∥x∥













=
1
∥x∥
∥x∥= 1.

Example. What is the unit vector u in the direction of x =
�

3
4

�

?

Solution. We divide by the length of x:

u=
x
∥x∥

=
1

p
32 + 42

�

3
4

�

=
1
5

�

3
4

�

=
�

3/5
4/5

�

.

x

u
0
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8.1.2 Orthogonal Vectors

In this section, we show how the dot product can be used to define orthogonality,
i.e., when two vectors are perpendicular to each other.

Definition. Two vectors x , y in Rn are orthogonal or perpendicular if x · y = 0.

Notation: x ⊥ y means x · y = 0.

Since 0 · x = 0 for any vector x , the zero vector is orthogonal to every vector
in Rn.

We motivate the above definition using the law of cosines in R2. In our language,
the law of cosines asserts that if x , y are two nonzero vectors, and if α > 0 is the
angle between them, then

∥y − x∥2 = ∥x∥2 + ∥y∥2 − 2∥x∥∥y∥ cosα.

x

y

∥x∥

∥y∥

∥y − x∥

α

In particular, α = 90◦ if and only if cos(α) = 0, which happens if and only if
∥y − x∥2 = ∥x∥2 + ∥y∥2. Therefore,

x and y are perpendicular ⇐⇒ ∥x∥2 + ∥y∥2 = ∥y − x∥2

⇐⇒ x · x + y · y = (y − x) · (y − x)
⇐⇒ x · x + y · y = y · y + x · x − 2x · y
⇐⇒ x · y = 0.

To reiterate:

x ⊥ y ⇐⇒ x · y = 0 ⇐⇒ ∥y − x∥2 = ∥x∥2 + ∥y∥2.

Example. Find all vectors orthogonal to v =





1
1
−1



 .
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Solution. We have to find all vectors x such that x · v = 0. This means solving
the equation

0= x · v =





x1

x2

x3



 ·





1
1
−1



= x1 + x2 − x3.

The parametric form for the solution set is x1 = −x2+ x3, so the parametric vector
form of the general solution is

x =





x1

x2

x3



= x2





−1
1
0



+ x3





1
0
1



 .

Therefore, the answer is the plane

Span











−1
1
0



 ,





1
0
1











.

For instance,




−1
1
0



⊥





1
1
−1



 because





−1
1
0



 ·





1
1
−1



= 0.

Example. Find all vectors orthogonal to both v =





1
1
−1



 and w=





1
1
1



.

Solution. We have to solve the system of two homogeneous equations

0 = x · v =





x1

x2

x3



 ·





1
1
−1



 = x1 + x2 − x3

0 = x ·w =





x1

x2

x3



 ·





1
1
1



 = x1 + x2 + x3.

In matrix form:
�

1 1 −1
1 1 1

�

RREF
−−→

�

1 1 0
0 0 1

�

.

The parametric vector form of the solution set is




x1

x2

x3



= x2





−1
1
0



 .
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Therefore, the answer is the line

Span











−1
1
0











.

For instance,




−1
1
0



 ·





1
1
−1



= 0 and





−1
1
0



 ·





1
1
1



= 0.

Remark (Angle between two vectors). More generally, the law of cosines gives a
formula for the angle α between two nonzero vectors:

2∥x∥∥y∥ cos(α) = ∥x∥2 + ∥y∥2 − ∥y − x∥2

= x · x + y · y − (y − x) · (y − x)
= x · x + y · y − y · y − x · x + 2x · y
= 2x · y

=⇒ α= cos−1
�

x · y
∥x∥∥y∥

�

.

In higher dimensions, we take this to be the definition of the angle between x and
y .

8.2 Orthogonal Complements

Objectives

1. Understand the basic properties of orthogonal complements.

2. Learn to compute the orthogonal complement of a subspace.

3. Recipes: shortcuts for computing the orthogonal complements of common
subspaces.

4. Picture: orthogonal complements in R2 and R3.

5. Theorem: row rank equals column rank.

6. Vocabulary: orthogonal complement, row space.

It will be important to compute the set of all vectors that are orthogonal to a
given set of vectors. It turns out that a vector is orthogonal to a set of vectors if
and only if it is orthogonal to the span of those vectors, which is a subspace, so we
restrict ourselves to the case of subspaces.
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8.2.1 Definition of the Orthogonal Complement

Taking the orthogonal complement is an operation that is performed on subspaces.

Definition. Let W be a subspace of Rn. Its orthogonal complement is the sub-
space

W⊥ =
�

v in Rn | v ·w= 0 for all w in W
	

.

The symbol W⊥ is sometimes read “W perp.”

This is the set of all vectors v in Rn that are orthogonal to all of the vectors in
W . We will show below that W⊥ is indeed a subspace.

Note. We now have two similar-looking pieces of notation:

AT is the transpose of a matrix A.

W⊥ is the orthogonal complement of a subspace W .

Try not to confuse the two.

Pictures of orthogonal complements The orthogonal complement of a line W
through the origin in R2 is the perpendicular line W⊥.

WW⊥

Interactive: Orthogonal complements in R2.

Use this link to view the online demo

The orthogonal complement of the line spanned by v is the perpendicular line. Click
and drag the head of v to move it.

The orthogonal complement of a line W in R3 is the perpendicular plane W⊥.

https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=2,3&captions=orthog&labels=v
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W⊥
W

Interactive: Orthogonal complements in R3.

Use this link to view the online demo

The orthogonal complement of the line spanned by v is the perpendicular plane. Click
and drag the head of v to move it.

The orthogonal complement of a plane W in R3 is the perpendicular line W⊥.

W
W⊥

Interactive: Orthogonal complements in R3.

Use this link to view the online demo

The orthogonal complement of the plane spanned by v, w is the perpendicular line.
Click and drag the heads of v, w to change the plane.

We see in the above pictures that (W⊥)⊥ =W .

Example. The orthogonal complement of Rn is {0}, since the zero vector is the
only vector that is orthogonal to all of the vectors in Rn.

For the same reason, we have {0}⊥ = Rn.

https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=.3,0,1&captions=orthog&range=3&labels=v
https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=.957,0,-.287&v2=0,1,0&captions=orthog&range=3&labels=v,w
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8.2.2 Computing Orthogonal Complements

Since any subspace is a span, the following proposition gives a recipe for com-
puting the orthogonal complement of any subspace. However, below we will give
several shortcuts for computing the orthogonal complements of other common
kinds of subspaces–in particular, null spaces. To compute the orthogonal comple-
ment of a general subspace, usually it is best to rewrite the subspace as the column
space or null space of a matrix, as in this important note in Section 3.3.

Proposition (The orthogonal complement of a column space). Let A be a matrix
and let W = Col(A). Then

W⊥ = Nul(AT ).

Proof. We need to show that a vector x is perpendicular to all of the vectors in W
if and only if it is perpendicular to v1, v2, . . . , vm, where

A=





| | |
v1 v1 · · · vn

| | |



 .

Since the vi are contained in W , we really only have to show that if x · v1 = x · v2 =
· · ·= x · vm = 0, then x is perpendicular to every vector v in W . Indeed, any vector
in W has the form v = c1v1 + c2v2 + · · ·+ cmvm for suitable scalars c1, c2, . . . , cm, so

x · v = x · (c1v1 + c2v2 + · · ·+ cmvm)
= c1(x · v1) + c2(x · v2) + · · ·+ cm(x · vm)
= c1(0) + c2(0) + · · ·+ cm(0) = 0.

Therefore, x is in W⊥.

Since column spaces are the same as spans, we can rephrase the proposition as
follows. Let v1, v2, . . . , vm be vectors in Rn, and let W = Span{v1, v2, . . . , vm}. Then

W⊥ =
�

all vectors orthogonal to each v1, v2, . . . , vm

	

= Nul









— vT
1 —

— vT
2 —

...
— vT

m —









.

Again, it is important to be able to go easily back and forth between spans and
column spaces. If you are handed a span, you can apply the proposition once you
have rewritten your span as a column space.

By the proposition, computing the orthogonal complement of a span means
solving a system of linear equations. For example, if

v1 =





1
7
2



 v2 =





−2
3
1




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then Span{v1, v2}⊥ is the solution set of the homogeneous linear system associated
to the matrix

�

— vT
1 —

— vT
2 —

�

=
�

1 7 2
−2 3 1

�

.

This is the solution set of the system of equations
§

x1 + 7x2 + 2x3 = 0
−2x1 + 3x2 + x3 = 0.

Example. Compute W⊥, where

W = Span











1
7
2



 ,





−2
3
1











.

Solution. According to the proposition, we need to compute the null space of
the matrix

�

1 7 2
−2 3 1

�

RREF
−−→

�

1 0 −1/17
0 1 5/17

�

.

The free variable is x3, so the parametric form of the solution set is x1 = x3/17, x2 =
−5x3/17, and the parametric vector form is





x1

x2

x3



= x3





1/17
−5/17

1



 .

Scaling by a factor of 17, we see that

W⊥ = Span











1
−5
17











.

We can check our work:




1
7
2



 ·





1
−5
17



= 0





−2
3
1



 ·





1
−5
17



= 0.

Example. Find all vectors orthogonal to v =





1
1
−1



 .

Solution. According to the proposition, we need to compute the null space of
the matrix

A=
�

— v —
�

=
�

1 1 −1
�

.
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This matrix is in reduced-row echelon form. The parametric form for the solution
set is x1 = −x2 + x3, so the parametric vector form of the general solution is

x =





x1

x2

x3



= x2





−1
1
0



+ x3





1
0
1



 .

Therefore, the answer is the plane

Span











−1
1
0



 ,





1
0
1











.

Use this link to view the online demo

The set of all vectors perpendicular to v.

Example. Compute

Span











1
1
−1



 ,





1
1
1











⊥

.

Solution. According to the proposition, we need to compute the null space of
the matrix

A=
�

1 1 −1
1 1 1

�

RREF
−−→

�

1 1 0
0 0 1

�

.

The parametric vector form of the solution is




x1

x2

x3



= x2





−1
1
0



 .

Therefore, the answer is the line

Span











−1
1
0











.

Use this link to view the online demo

The orthogonal complement of the plane spanned by v = (1, 1,−1) and w= (1, 1,1).

In order to find shortcuts for computing orthogonal complements, we need the
following basic facts. Looking back the above examples, all of these facts should
be believable.

https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=1,1,-1&captions=orthog&range=3&labels=v
https://ulrikbuchholtz.dk/ila/demos/spans.html?v1=1,1,-1&v2=1,1,1&captions=orthog&range=3&labels=v,w
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Facts about Orthogonal Complements. Let W be a subspace of Rn. Then:

1. W⊥ is also a subspace of Rn.

2. W ∩W⊥ = {0}

3. W +W⊥ = Rn

4. dim(W ) + dim(W⊥) = n.

5. (W⊥)⊥ =W.

Proof. For the first assertion, we verify the three defining properties of subspaces.

1. The zero vector is in W⊥ because the zero vector is orthogonal to every vector
in Rn.

2. Let u, v be in W⊥, so u · x = 0 and v · x = 0 for every vector x in W . We must
verify that (u+ v) · x = 0 for every x in W . Indeed, we have

(u+ v) · x = u · x + v · x = 0+ 0= 0.

3. Let u be in W⊥, so u · x = 0 for every x in W , and let c be a scalar. We must
verify that (cu) · x = 0 for every x in W . Indeed, we have

(cu) · x = c(u · x) = c0= 0.

For the second assertion, assume w ∈ W ∩W⊥. Then w is perpendicular to
itself. In particular, w ·w= 0, so ∥w∥= 0 and w= 0.

For the third assertion, assume that the subspace sum W +W⊥ is not all of Rn.
Then it is expressible as a column space Col(A) for an n×k matrix A with less than
n columns. Then by the proposition we have that Col(A)⊥ = Nul(AT ) has at least
dimension 1 by the note in Section 4.2, since AT is then a wide k× n matrix. That
is, there is a nonzero vector x ∈ (W +W⊥)⊥ =W⊥ ∩ (W⊥)⊥, which is impossible
by the second assertion applied to W⊥.

The fourth assertion now follows directly from grassmann’s formula in Sec-
tion 3.7 as

dim(W ) + dim(W⊥) = dim(W ∩W⊥) + dim(W +W⊥) = 0+ n= n.

For the final assertion, first note that W is contained in (W⊥)⊥: this says that
everything in W is perpendicular to the set of all vectors perpendicular to every-
thing in W . Let m= dim(W ). By 4, we have dim(W⊥) = n−m, so dim((W⊥)⊥) =
n− (n−m) = m. The only m-dimensional subspace of (W⊥)⊥ is all of (W⊥)⊥, so
(W⊥)⊥ =W.
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See these paragraphs for pictures of the second property. As for the third: for
example, if W is a (2-dimensional) plane in R4, then W⊥ is another (2-dimensional)
plane. Explicitly, we have

Span
�

e1, e2

	⊥
=

















x
y
z
w






in R4

�

�

�

�







x
y
z
w






·







1
0
0
0






= 0 and







x
y
z
w






·







0
1
0
0






= 0











=

















0
0
z
w






in R4











= Span
�

e3, e4} :

the orthogonal complement of the x y-plane is the zw-plane.

Definition. The row space of a matrix A is the span of the rows of A, and is denoted
Row(A).

If A is an m×n matrix, then the rows of A are vectors with n entries, so Row(A)
is a subspace of Rn. Equivalently, since the rows of A are the columns of AT , the
row space of A is the column space of AT :

Row(A) = Col(AT ).

We showed in the above proposition that if A has rows vT
1 , vT

2 , . . . , vT
m, then

Row(A)⊥ = Span{v1, v2, . . . , vm}⊥ = Nul(A).

Taking orthogonal complements of both sides and using the final fact gives

Row(A) = Nul(A)⊥.

Replacing A by AT and remembering that Row(A) = Col(AT ) gives

Col(A)⊥ = Nul(AT ) and Col(A) = Nul(AT )⊥.

To summarize:

Recipes: Shortcuts for computing orthogonal complements. For any vec-
tors v1, v2, . . . , vm, we have

Span{v1, v2, . . . , vm}⊥ = Nul









— vT
1 —

— vT
2 —

...
— vT

m —









.

For any matrix A, we have

Row(A)⊥ = Nul(A) Nul(A)⊥ = Row(A)

Col(A)⊥ = Nul(AT ) Nul(AT )⊥ = Col(A).

As mentioned in the beginning of this subsection, in order to compute the
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orthogonal complement of a general subspace, usually it is best to rewrite the
subspace as the column space or null space of a matrix.

Example (Orthogonal complement of a subspace). Compute the orthogonal com-
plement of the subspace

W =
�

(x , y, z) in R3 | 3x + 2y = z
	

.

Solution. Rewriting, we see that W is the solution set of the system of equations
3x + 2y − z = 0, i.e., the null space of the matrix A=

�

3 2 −1
�

. Therefore,

W⊥ = Row(A) = Span











3
2
−1











.

No row reduction was needed!

Example (Orthogonal complement of an eigenspace). Find the orthogonal com-
plement of the 5-eigenspace of the matrix

A=





2 4 −1
3 2 0
−2 4 3



 .

Solution. The 5-eigenspace is

W = Nul(A− 5I3) = Nul





−3 4 −1
3 −3 0
−2 4 −2



 ,

so

W⊥ = Row





−3 4 −1
3 −3 0
−2 4 −2



= Span











−3
4
−1



 ,





3
−3

0



 ,





−2
4
−2











.

These vectors are necessarily linearly dependent (why)?

8.2.3 Row rank and column rank

Suppose that A is an m× n matrix. Let us refer to the dimensions of Col(A) and
Row(A) as the row rank and the column rank of A (note that the column rank of
A is the same as the rank of A). The next theorem says that the row and column
ranks are the same. This is surprising for a couple of reasons. First, Row(A) lies in
Rn and Col(A) lies in Rm. Also, the theorem implies that A and AT have the same
number of pivots, even though the reduced row echelon forms of A and AT have
nothing to do with each other otherwise.
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Theorem. Let A be a matrix. Then the row rank of A is equal to the column rank of
A.

Proof. By the rank theorem in Section 3.6, we have

dimCol(A) + dim Nul(A) = n.

On the other hand the third fact says that

dimNul(A)⊥ + dimNul(A) = n,

which implies dimCol(A) = dim Nul(A)⊥. Since Nul(A)⊥ = Row(A), we have

dimCol(A) = dimRow(A),

as desired.

In particular, by this corollary in Section 3.4 both the row rank and the column
rank are equal to the number of pivots of A.

8.3 Orthogonal Projection

Objectives

1. Understand the orthogonal decomposition of a vector with respect to a sub-
space.

2. Understand the relationship between orthogonal decomposition and orthog-
onal projection.

3. Understand the relationship between orthogonal decomposition and the clos-
est vector on / distance to a subspace.

4. Learn the basic properties of orthogonal projections as linear transforma-
tions and as matrix transformations.

5. Recipes: orthogonal projection onto a line, orthogonal decomposition by
solving a system of equations, orthogonal projection via a complicated ma-
trix product.

6. Pictures: orthogonal decomposition, orthogonal projection.

7. Vocabulary: orthogonal decomposition, orthogonal projection.

Let W be a subspace of Rn and let x be a vector in Rn. In this section, we
will learn to compute the closest vector xW to x in W . The vector xW is called the
orthogonal projection of x onto W . This is exactly what we will use to almost solve
matrix equations, as discussed in the introduction to Chapter 8.
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8.3.1 Orthogonal Decomposition

We begin by fixing some notation.

Notation. Let W be a subspace of Rn and let x be a vector in Rn. We denote the
closest vector to x on W by xW .

To say that xW is the closest vector to x on W means that the difference x− xW

is orthogonal to the vectors in W :

WxW

x

x − xW

In other words, if xW⊥ = x − xW , then we have x = xW + xW⊥ , where xW is in
W and xW⊥ is in W⊥. The first order of business is to prove that the closest vector
always exists.

Theorem (Orthogonal decomposition). Let W be a subspace of Rn and let x be a
vector in Rn. Then we can write x uniquely as

x = xW + xW⊥

where xW is the closest vector to x on W and xW⊥ is in W⊥.

Proof. If U , V ⊆ Rn are any subspaces with dim(U)+dim(V ) = n and dim(U∩V ) =
0, then any vector x ∈ Rn can be uniquely written as x = u + v with u ∈ U and
v ∈ V : indeed, U + V = Rn so such decompositions exist, if we have two such
expressions x = u+ v = u′ + v′, then u− u′ = v′ − v ∈ U ∩ V = {0}, so u = u′ and
v = v′.

To can apply this to W and W⊥ because of these facts in Section 8.2. Thus, we
can write any x ∈ Rn uniquely as

x = xW + xW⊥

where xW ∈W and xW⊥ ∈W⊥. Since xW⊥ is orthogonal to W , the vector xW is the
closest vector to x on W .

Definition. Let W be a subspace of Rn and let x be a vector in Rn. The expression

x = xW + xW⊥

for xW in W and xW⊥ in W⊥, is called the orthogonal decomposition of x with
respect to W , and the closest vector xW is the orthogonal projection of x onto
W .
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Since xW is the closest vector on W to x , the distance from x to the subspace
W is the length of the vector from xW to x , i.e., the length of xW⊥ . To restate:

Closest vector and distance. Let W be a subspace of Rn and let x be a vector
in Rn.

• The orthogonal projection xW is the closest vector to x in W .

• The distance from x to W is ∥xW⊥∥.

Example (Orthogonal decomposition with respect to the x y-plane). Let W be
the x y-plane in R3, so W⊥ is the z-axis. It is easy to compute the orthogonal
decomposition of a vector with respect to this W :

x =





1
2
3



 =⇒ xW =





1
2
0



 xW⊥ =





0
0
3





x =





a
b
c



 =⇒ xW =





a
b
0



 xW⊥ =





0
0
c



 .

We see that the orthogonal decomposition in this case expresses a vector in terms
of a “horizontal” component (in the x y-plane) and a “vertical” component (on the
z-axis).

x

xW

xW⊥

W

Use this link to view the online demo

Orthogonal decomposition of a vector with respect to the x y-plane in R3. Note that
xW is in the x y-plane and xW⊥ is in the z-axis. Click and drag the head of the vector
x to see how the orthogonal decomposition changes.

Example (Orthogonal decomposition of a vector in W ). If x is in a subspace W ,
then the closest vector to x in W is itself, so x = xW and xW⊥ = 0. Conversely, if
x = xW then x is contained in W because xW is contained in W .

https://ulrikbuchholtz.dk/ila/demos/projection.html?u1=1,0,0&u2=0,1,0&vec=-1.1,2,1.5&range=3&mode=decomp&closed
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Example (Orthogonal decomposition of a vector in W⊥). If W is a subspace and
x is in W⊥, then the orthogonal decomposition of x is x = 0+ x , where 0 is in W
and x is in W⊥. It follows that xW = 0. Conversely, if xW = 0 then the orthogonal
decomposition of x is x = xW + xW⊥ = 0+ xW⊥ , so x = xW⊥ is in W⊥.

Interactive: Orthogonal decomposition in R2.

Use this link to view the online demo

Orthogonal decomposition of a vector with respect to a line W in R2. Note that xW

is in W and xW⊥ is in the line perpendicular to W. Click and drag the head of the
vector x to see how the orthogonal decomposition changes.

Interactive: Orthogonal decomposition in R3.

Use this link to view the online demo

Orthogonal decomposition of a vector with respect to a plane W in R3. Note that xW

is in W and xW⊥ is in the line perpendicular to W. Click and drag the head of the
vector x to see how the orthogonal decomposition changes.

Interactive: Orthogonal decomposition in R3.

Use this link to view the online demo

Orthogonal decomposition of a vector with respect to a line W in R3. Note that xW

is in W and xW⊥ is in the plane perpendicular to W. Click and drag the head of the
vector x to see how the orthogonal decomposition changes.

Now we turn to the problem of computing xW and xW⊥ . Of course, since xW⊥ =
x−xW , really all we need is to compute xW . The following theorem gives a method
for computing the orthogonal projection onto a column space. To compute the
orthogonal projection onto a general subspace, usually it is best to rewrite the
subspace as the column space of a matrix, as in this important note in Section 3.3.

Theorem. Let A be an m× n matrix, let W = Col(A), and let x be a vector in Rm.
Then the matrix equation

AT Ac = AT x

in the unknown vector c is consistent, and xW is equal to Ac for any solution c.

Proof. Let x = xW + xW⊥ be the orthogonal decomposition with respect to W . By
definition xW lies in W = Col(A) and so there is a vector c in Rn with Ac = xW .
Choose any such vector c. We know that x − xW = x − Ac lies in W⊥, which is
equal to Nul(AT ) by this important note in Section 8.2. We thus have

0= AT (x − Ac) = AT x − AT Ac

https://ulrikbuchholtz.dk/ila/demos/projection.html?u1=1,.5&vec=1,-1&range=3&mode=decomp&closed&subname=W
https://ulrikbuchholtz.dk/ila/demos/projection.html?u1=1,0,0&u2=0,1.1,-.2&vec=-1.1,2,1.5&range=3&mode=decomp&closed
https://ulrikbuchholtz.dk/ila/demos/projection.html?u1=0,1.1,.2&vec=-1.1,2,1.5&range=3&mode=decomp&closed&subname=W
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and so
AT Ac = AT x .

This exactly means that AT Ac = AT x is consistent. If c is any solution to AT Ac = AT x
then by reversing the above logic, we conclude that xW = Ac.

Example (Orthogonal projection onto a line). Let L = Span{u} be a line in Rn

and let x be a vector in Rn. By the theorem, to find x L we must solve the matrix
equation uT uc = uT x , where we regard u as an n× 1 matrix (the column space of
this matrix is exactly L!). But uT u= u ·u and uT x = u · x , so c = (u · x)/(u ·u) is a
solution of uT uc = uT x , and hence x L = uc = (u · x)/(u · u)u.

L

u

x

x L =
u · x
u · u

u

x L⊥

To reiterate:

Recipe: Orthogonal projection onto a line. If L = Span{u} is a line, then

x L =
u · x
u · u

u and x L⊥ = x − x L

for any vector x .

Remark (Simple proof for the formula for projection onto a line). In the special
case where we are projecting a vector x in Rn onto a line L = Span{u}, our formula
for the projection can be derived very directly and simply. The vector x L is a
multiple of u, say x L = cu. This multiple is chosen so that x − x L = x − cu is
perpendicular to u, as in the following picture.

L

u

cu

x

c =
u · x
u · u

x − cu
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In other words,
(x − cu) · u= 0.

Using the distributive property for the dot product and isolating the variable c
gives us that

c =
u · x
u · u

and so
x L = cu=

u · x
u · u

u.

Example (Projection onto a line in R2). Compute the orthogonal projection of
x =

�−6
4

�

onto the line L spanned by u=
�3

2

�

, and find the distance from x to L.

Solution. First we find

x L =
x · u
u · u

u=
−18+ 8

9+ 4

�

3
2

�

= −
10
13

�

3
2

�

x L⊥ = x − x L =
1

13

�

−48
72

�

.

The distance from x to L is

∥x L⊥∥=
1

13

p

482 + 722 ≈ 6.656.

L

�

3
2

�

�

−6
4

�

−
10
13

�

3
2

�

Use this link to view the online demo

Distance from the line L.

Example (Projection onto a line in R3). Let

x =





−2
3
−1



 u=





−1
1
1



 ,

https://ulrikbuchholtz.dk/ila/demos/projection.html?u1=3,2&vec=-6,4&labels=u&closed&mode=distance


402 CHAPTER 8. ORTHOGONALITY

and let L be the line spanned by u. Compute x L and x⊥L .

Solution.

x L =
x · u
u · u

u=
2+ 3− 1
1+ 1+ 1





−1
1
1



=
4
3





−1
1
1



 x L⊥ = x − x L =
1
3





−2
5
−7



 .

Use this link to view the online demo

Orthogonal projection onto the line L.

When A is a matrix with more than one column, computing the orthogonal
projection of x onto W = Col(A) means solving the matrix equation AT Ac = AT x .
In other words, we can compute the closest vector by solving a system of linear
equations. To be explicit, we state the theorem as a recipe:

Recipe: Compute an orthogonal decomposition. Let W be a subspace of
Rm. Here is a method to compute the orthogonal decomposition of a vector x
with respect to W :

1. Rewrite W as the column space of a matrix A. In other words, find a a
spanning set for W , and let A be the matrix with those columns.

2. Compute the matrix AT A and the vector AT x .

3. Form the augmented matrix for the matrix equation AT Ac = AT x in the
unknown vector c, and row reduce.

4. This equation is always consistent; choose one solution c. Then

xW = Ac xW⊥ = x − xW .

Example (Projection onto the x y-plane). Use the theorem to compute the orthog-
onal decomposition of a vector with respect to the x y-plane in R3.

Solution. A basis for the x y-plane is given by the two standard coordinate vec-
tors

e1 =





1
0
0



 e2 =





0
1
0



 .

Let A be the matrix with columns e1, e2:

A=





1 0
0 1
0 0



 .

https://ulrikbuchholtz.dk/ila/demos/projection.html?u1=-1,1,1&vec=-2,3,-1&labels=u&range=3.5&closed
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Then

AT A=
�

1 0
0 1

�

= I2 AT





x1

x2

x3



=
�

1 0 0
0 1 0

�





x1

x2

x3



=
�

x1

x2

�

.

It follows that the unique solution c of AT Ac = I2c = AT x is given by the first two
coordinates of x , so

xW = A
�

x1

x2

�

=





1 0
0 1
0 0





�

x1

x2

�

=





x1

x2

0



 xW⊥ = x − xW =





0
0

x3



 .

We have recovered this example.

Example (Projection onto a plane in R3). Let

W = Span











1
0
−1



 ,





1
1
0











x =





1
2
3



 .

Compute xW and the distance from x to W .

Solution. We have to solve the matrix equation AT Ac = AT x , where

A=





1 1
0 1
−1 0



 .

We have

AT A=
�

2 1
1 2

�

AT x =
�

−2
3

�

.

We form an augmented matrix and row reduce:
�

2 1 −2
1 2 3

�

RREF
−−→

�

1 0 −7/3
0 1 8/3

�

=⇒ c =
1
3

�

−7
8

�

.

It follows that

xW = Ac =
1
3





1
8
7



 xW⊥ = x − xW =
1
3





2
−2

2



 .

The distance from x to W is

∥xW⊥∥=
1
3

p
4+ 4+ 4≈ 1.155.

Use this link to view the online demo

Orthogonal projection onto the plane W.

https://ulrikbuchholtz.dk/ila/demos/projection.html?u1=1,0,-1&u2=-1,-2,-1&vec=1,2,3&labels=v1,v2&range=3.5&closed&mode=decomp
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Example (Projection onto another plane in R3). Let

W =











x1

x2

x3





�

� x1 − 2x2 = x3







and x =





1
1
1



 .

Compute xW .

Solution. Method 1: First we need to find a spanning set for W . We notice that
W is the solution set of the homogeneous equation x1 − 2x2 − x3 = 0, so W =
Nul

�

1 −2 −1
�

. We know how to compute a basis for a null space: we row
reduce and find the parametric vector form. The matrix

�

1 −2 −1
�

is already in
reduced row echelon form. The parametric form is x1 = 2x2+x3, so the parametric
vector form is





x1

x2

x3



= x2





2
1
0



+ x3





1
0
1



 ,

and hence a basis for V is given by











2
1
0



 ,





1
0
1











.

We let A be the matrix whose columns are our basis vectors:

A=





2 1
1 0
0 1



 .

Hence Col(A) = Nul
�

1 −2 −1
�

=W .
Now we can continue with step 1 of the recipe. We compute

AT A=
�

5 2
2 2

�

AT x =
�

3
2

�

.

We write the linear system AT Ac = AT x as an augmented matrix and row reduce:

�

5 2 3
2 2 2

�

RREF
−−→

�

1 0 1/3
0 1 2/3

�

.

Hence we can take c =
�1/3

2/3

�

, so

xW = Ac =





2 1
1 0
0 1





�

1/3
2/3

�

=
1
3





4
1
2



 .
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Use this link to view the online demo

Orthogonal projection onto the plane W.

Method 2: In this case, it is easier to compute xW⊥ . Indeed, since W = Nul
�

1 −2 −1
�

,
the orthogonal complement is the line

V =W⊥ = Col





1
−2
−1



 .

Using the formula for projection onto a line gives

xW⊥ = xV =





1
1
1



 ·





1
−2
−1









1
−2
−1



 ·





1
−2
−1









1
−2
−1



=
1
3





−1
2
1



 .

Hence we have

xW = x − xW⊥ =





1
1
1



−
1
3





−1
2
1



 .=
1
3





4
1
2



 ,

as above.

Example (Projection onto a 3-space in R4). Let

W = Span

















1
0
−1

0






,







0
1
0
−1






,







1
1
1
−1

















x =







0
1
3
4






.

Compute the orthogonal decomposition of x with respect to W .

Solution. We have to solve the matrix equation AT Ac = AT x , where

A=







1 0 1
0 1 1
−1 0 1

0 −1 −1






.

We compute

AT A=





2 0 0
0 2 2
0 2 4



 AT x =





−3
−3

0



 .

https://ulrikbuchholtz.dk/ila/demos/projection.html?u1=1,1,-1&u2=1,0,1&vec=1,1,1&labels=v1,v2&range=3.5&closed&mode=decomp
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We form an augmented matrix and row reduce:




2 0 0 −3
0 2 2 −3
0 2 4 0





RREF
−−→





1 0 0 −3/2
0 1 0 −3
0 0 1 3/2



 =⇒ c =
1
2





−3
−6

3



 .

It follows that

xW = Ac =
1
2







0
−3

6
3






xW⊥ =

1
2







0
5
0
5






.

In the context of the above recipe, if we start with a basis of W , then it turns
out that the square matrix AT A is automatically invertible! (It is always the case
that AT A is square and the equation AT Ac = AT x is consistent, but AT A need not be
invertible in general.)

Corollary. Let A be an m× n matrix with linearly independent columns and let W =
Col(A). Then the n× n matrix AT A is invertible, and for all vectors x in Rm, we have

xW = A(AT A)−1AT x .

Proof. We will show that Nul(AT A) = {0}, which implies invertibility by the invert-
ible matrix theorem in Section 6.1. Suppose that AT Ac = 0. Then AT Ac = AT 0, so
0W = Ac by the theorem. But 0W = 0 (the orthogonal decomposition of the zero
vector is just 0= 0+0), so Ac = 0, and therefore c is in Nul(A). Since the columns
of A are linearly independent, we have c = 0, so Nul(AT A) = 0, as desired.

Let x be a vector in Rn and let c be a solution of AT Ac = AT x . Then c =
(AT A)−1AT x , so xW = Ac = A(AT A)−1AT x .

The corollary applies in particular to the case where we have a subspace W
of Rm, and a basis v1, v2, . . . , vn for W . To apply the corollary, we take A to be the
m× n matrix with columns v1, v2, . . . , vn.

Example (Computing a projection). Continuing with the above example, let

W = Span











1
0
−1



 ,





1
1
0











x =





x1

x2

x3



 .

Compute xW using the formula xW = A(AT A)−1AT x .

Solution. Clearly the spanning vectors are noncollinear, so according to the corol-
lary, we have xW = A(AT A)−1AT x , where

A=





1 1
0 1
−1 0



 .
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We compute

AT A=
�

2 1
1 2

�

=⇒ (AT A)−1 =
1
3

�

2 −1
−1 2

�

,

so

xW = A(AT A)−1AT x =





1 1
0 1
−1 0





1
3

�

2 −1
−1 2

��

1 0 −1
1 1 0

�





x1

x2

x3





=
1
3





2 1 −1
1 2 1
−1 1 2









x1

x2

x3



=
1
3





2x1 + x2 − x3

x1 + 2x2 + x3

−x1 + x2 + 2x3



 .

So, for example, if x = (1, 0,0), this formula tells us that xW = (2, 1,−1).

8.3.2 Orthogonal Projection

In this subsection, we change perspective and think of the orthogonal projection
xW as a function of x . This function turns out to be a linear transformation with
many nice properties, and is a good example of a linear transformation which is
not originally defined as a matrix transformation.

Properties of Orthogonal Projections. Let W be a subspace of Rn, and define
T : Rn→ Rn by T (x) = xW . Then:

1. T is a linear transformation.

2. T (x) = x if and only if x is in W.

3. T (x) = 0 if and only if x is in W⊥.

4. T ◦ T = T.

5. The range of T is W.

Proof.

1. We have to verify the defining properties of linearity in Section 4.3. Let
x , y be vectors in Rn, and let x = xW + xW⊥ and y = yW + yW⊥ be their
orthogonal decompositions. Since W and W⊥ are subspaces, the sums xW +
yW and xW⊥+ yW⊥ are in W and W⊥, respectively. Therefore, the orthogonal
decomposition of x + y is (xW + yW ) + (xW⊥ + yW⊥), so

T (x + y) = (x + y)W = xW + yW = T (x) + T (y).

Now let c be a scalar. Then cxW is in W and cxW⊥ is in W⊥, so the orthogonal
decomposition of cx is cxW + cxW⊥ , and therefore,

T (cx) = (cx)W = cxW = cT (x).

Since T satisfies the two defining properties in Section 4.3, it is a linear
transformation.



408 CHAPTER 8. ORTHOGONALITY

2. See this example.

3. See this example.

4. For any x in Rn the vector T (x) is in W , so T ◦ T (x) = T (T (x)) = T (x) by
2.

5. Any vector x in W is in the range of T , because T (x) = x for such vectors.
On the other hand, for any vector x in Rn the output T (x) = xW is in W , so
W is the range of T .

We compute the standard matrix of the orthogonal projection in the same way
as for any other transformation: by evaluating on the standard coordinate vec-
tors. In this case, this means projecting the standard coordinate vectors onto the
subspace.

Example (Matrix of a projection). Let L be the line in R2 spanned by the vector
u=

�3
2

�

, and define T : R2→ R2 by T (x) = x L. Compute the standard matrix B for
T .

Solution. The columns of B are T (e1) = (e1)L and T (e2) = (e2)L. We have

(e1)L =
u · e1

u · u
u=

3
13

�

3
2

�

(e2)L =
u · e2

u · u
u=

2
13

�

3
2

�















=⇒ B =
1

13

�

9 6
6 4

�

.

Example (Matrix of a projection). Let L be the line in R2 spanned by the vector

u=





−1
1
1



 ,

and define T : R3→ R3 by T (x) = x L. Compute the standard matrix B for T .

Solution. The columns of B are T (e1) = (e1)L, T (e2) = (e2)L, and T (e3) = (e3)L.
We have

(e1)L =
u · e1

u · u
u=
−1
3





−1
1
1





(e2)L =
u · e2

u · u
u=

1
3





−1
1
1





(e3)L =
u · e3

u · u
u=

1
3





−1
1
1































































=⇒ B =
1
3





1 −1 −1
−1 1 1
−1 1 1



 .
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Example (Matrix of a projection). Continuing with this example, let

W = Span











1
0
−1



 ,





1
1
0











,

and define T : R3→ R3 by T (x) = xW . Compute the standard matrix B for T .

Solution. The columns of B are T (e1) = (e1)W , T (e2) = (e2)W , and T (e3) =
(e3)W . Let

A=





1 1
0 1
−1 0



 .

To compute each (ei)W , we solve the matrix equation AT Ac = AT ei for c, then use
the equality (ei)W = Ac. First we note that

AT A=
�

2 1
1 2

�

; AT ei = the ith column of AT =
�

1 0 −1
1 1 0

�

.

For e1, we form an augmented matrix and row reduce:

�

2 1 1
1 2 1

�

RREF
−−→

�

1 0 1/3
0 1 1/3

�

=⇒ (e1)W = A
�

1/3
1/3

�

=
1
3





2
1
−1



 .

We do the same for e2:

�

2 1 0
1 2 1

�

RREF
−−→

�

1 0 −1/3
0 1 2/3

�

=⇒ (e1)W = A
�

−1/3
2/3

�

=
1
3





1
2
1





and for e3:

�

2 1 −1
1 2 0

�

RREF
−−→

�

1 0 −2/3
0 1 1/3

�

=⇒ (e1)W = A
�

−2/3
1/3

�

=
1
3





−1
1
2



 .

It follows that

B =
1
3





2 1 −1
1 2 1
−1 1 2



 .

In the previous example, we could have used the fact that










1
0
−1



 ,





1
1
0










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forms a basis for W , so that

T (x) = xW =
�

A(AT A)−1AT
�

x for A=





1 1
0 1
−1 0





by the corollary. In this case, we have already expressed T as a matrix transfor-
mation with matrix A(AT A)−1AT . See this example.

Let W be a subspace of Rn with basis v1, v2, . . . , vm, and let A be the matrix with
columns v1, v2, . . . , vm. Then the standard matrix for T (x) = xW is

A(AT A)−1AT .

We can translate the above properties of orthogonal projections into properties
of the associated standard matrix.

Properties of Projection Matrices. Let W be a subspace of Rn, define T : Rn→ Rn

by T (x) = xW , and let B be the standard matrix for T . Then:

1. Col(B) =W.

2. Nul(B) =W⊥.

3. B2 = B.

4. If W ̸= {0}, then 1 is an eigenvalue of B and the 1-eigenspace for B is W.

5. If W ̸= Rn, then 0 is an eigenvalue of B and the 0-eigenspace for B is W⊥.

6. B is similar to the diagonal matrix with m ones and n−m zeros on the diagonal,
where m= dim(W ).

Proof. The first four assertions are translations of properties 5, 3, 4, and 2, respec-
tively, using this important note in Section 4.1 and this theorem in Section 4.4.
The fifth assertion is equivalent to the second, by this fact in Section 6.1.

For the final assertion, we showed in the proof of this theorem that there is a
basis of Rn of the form {v1, . . . , vm, vm+1, . . . , vn}, where {v1, . . . , vm} is a basis for
W and {vm+1, . . . , vn} is a basis for W⊥. Each vi is an eigenvector of B: indeed, for
i ≤ m we have

Bvi = T (vi) = vi = 1 · vi

because vi is in W , and for i > m we have

Bvi = T (vi) = 0= 0 · vi

because vi is in W⊥. Therefore, we have found a basis of eigenvectors, with as-
sociated eigenvalues 1, . . . , 1, 0, . . . , 0 (m ones and n−m zeros). Now we use the
diagonalization theorem in Section 6.4.
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We emphasize that the properties of projection matrices would be very hard
to prove in terms of matrices. By translating all of the statements into statements
about linear transformations, they become much more transparent. For example,
consider the projection matrix we found in this example. Just by looking at the
matrix it is not at all obvious that when you square the matrix you get the same
matrix back.

Example. Continuing with the above example, we showed that

B =
1
3





2 1 −1
1 2 1
−1 1 2





is the standard matrix of the orthogonal projection onto

W = Span











1
0
−1



 ,





1
1
0











.

One can verify by hand that B2 = B (try it!). We compute W⊥ as the null space of

�

1 0 −1
1 1 0

�

RREF
−−→

�

1 0 −1
0 1 1

�

.

The free variable is x3, and the parametric form is x1 = x3, x2 = −x3, so that

W⊥ = Span











1
−1

1











.

It follows that B has eigenvectors





1
0
−1



 ,





1
1
0



 ,





1
−1

1





with eigenvalues 1,1, 0, respectively, so that

B =





1 1 1
0 1 −1
−1 0 1









1 0 0
0 1 0
0 0 0









1 1 1
0 1 −1
−1 0 1





−1

.

Remark. As we saw in this example, if you are willing to compute bases for W and
W⊥, then this provides a third way of finding the standard matrix B for projection
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onto W : indeed, if {v1, v2, . . . , vm} is a basis for W and {vm+1, vm+2, . . . , vn} is a basis
for W⊥, then

B =





| | |
v1 v1 · · · vn

| | |





















1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 0 · · · 0
0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0





















| | |
v1 v1 · · · vn

| | |





−1

,

where the middle matrix in the product is the diagonal matrix with m ones and
n−m zeros on the diagonal. However, since you already have a basis for W , it is
faster to multiply out the expression A(AT A)−1AT as in the corollary.

Remark (Reflections). Let W be a subspace of Rn, and let x be a vector in Rn. The
reflection of x over W is defined to be the vector

refW (x) = x − 2xW⊥ .

In other words, to find refW (x) one starts at x , then moves to x − xW⊥ = xW , then
continues in the same direction one more time, to end on the opposite side of W .

W

x

xW

−xW⊥

−xW⊥−xW⊥

refW (x)

Since xW⊥ = x − xW , we also have

refW (x) = x − 2(x − xW ) = 2xW − x .

We leave it to the reader to check using the definition that:

1. refW ◦ refW = IdRn .

2. The 1-eigenspace of refW is W , and the −1-eigenspace of refW is W⊥.

3. refW is similar to the diagonal matrix with m= dim(W ) ones on the diagonal
and n−m negative ones.
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8.4 Orthogonal Sets

Objectives

1. Understand which is the best method to use to compute an orthogonal pro-
jection in a given situation.

2. Recipes: an orthonormal set from an orthogonal set, Projection Formula, B-
coordinates when B is an orthogonal set, Gram–Schmidt process.

3. Vocabulary: orthogonal set, orthonormal set.

In this section, we give a formula for orthogonal projection that is considerably
simpler than the one in Section 8.3, in that it does not require row reduction or
matrix inversion. However, this formula, called the Projection Formula, only works
in the presence of an orthogonal basis. We will also present the Gram–Schmidt
process for turning an arbitrary basis into an orthogonal one.

8.4.1 Orthogonal Sets and the Projection Formula

Computations involving projections tend to be much easier in the presence of an
orthogonal set of vectors.

Definition. A set of nonzero vectors {u1, u2, . . . , um} is called orthogonal if ui ·u j =
0 whenever i ̸= j. It is orthonormal if it is orthogonal, and in addition ui · ui = 1
for all i = 1,2, . . . , m.

In other words, a set of vectors is orthogonal if different vectors in the set
are perpendicular to each other. An orthonormal set is an orthogonal set of unit
vectors.

Example. The standard coordinate vectors in Rn always form an orthonormal set.
For instance, in R3 we check that





1
0
0



 ·





0
1
0



= 0





1
0
0



 ·





0
0
1



= 0





0
1
0



 ·





0
0
1



= 0.

Since ei · ei = 1 for all i = 1,2, 3, this shows that {e1, e2, e3} is orthonormal.
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e1

e2

e3

Example. Is this set orthogonal? Is it orthonormal?

B =











1
1
1



 ,





1
−2

1



 ,





1
0
−1











Solution. We check that




1
1
1



 ·





1
−2

1



= 0





1
1
1



 ·





1
0
−1



= 0





1
−2

1



 ·





1
0
−1



= 0.

Therefore, B is orthogonal.

The set B is not orthonormal because, for instance,




1
1
1



 ·





1
1
1



= 3 ̸= 1.

However, we can make it orthonormal by replacing each vector by the unit vector
in the direction of each vector:







1
p

3





1
1
1



 ,
1
p

6





1
−2

1



 ,
1
p

2





1
0
−1











is orthonormal.
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We saw in the previous example that it is easy to produce an orthonormal set
of vectors from an orthogonal one by replacing each vector with the unit vector in
the same direction.

Recipe: An orthonormal set from an orthogonal set. If {v1, v2, . . . , vm} is an
orthogonal set of vectors, then

§

v1

∥v1∥
,

v2

∥v2∥
, . . . ,

vm

∥vm∥

ª

is an orthonormal set.

Example. Let a, b be scalars, and let

u1 =
�

a
b

�

u2 =
�

−b
a

�

.

Is B = {u1, u2} orthogonal?

Solution. We only have to check that

�

a
b

�

·
�

−b
a

�

= −ab+ ab = 0.

Therefore, {u1, u2} is orthogonal, unless a = b = 0.

Non-Example. Is this set orthogonal?

B =











1
1
1



 ,





1
−2

1



 ,





1
−1
−1











Solution. This set is not orthogonal because





1
1
1



 ·





1
−1
−1



= 1− 1− 1= −1 ̸= 0.

We will see how to produce an orthogonal set from B in this subsection.

A nice property enjoyed by orthogonal sets is that they are automatically lin-
early independent.

Fact. An orthogonal set is linearly independent. Therefore, it is a basis for its span.
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Proof. Suppose that {u1, u2, . . . , um} is orthogonal. We need to show that the equa-
tion

c1u1 + c2u2 + · · ·+ cmum = 0

has only the trivial solution c1 = c2 = · · ·= cm = 0. Taking the dot product of both
sides of this equation with u1 gives

0= u1 · 0= u1 ·
�

c1u1 + c2u2 + · · ·+ cmum

�

= c1(u1 · u1) + c2(u1 · u2) + · · ·+ cm(u1 · um)
= c1(u1 · u1)

because u1 ·ui = 0 for i > 1. Since u1 ̸= 0 we have u1 ·u1 ̸= 0, so c1 = 0. Similarly,
taking the dot product with ui shows that each ci = 0, as desired.

One advantage of working with orthogonal sets is that it gives a simple formula
for the orthogonal projection of a vector.

Projection Formula. Let W be a subspace of Rn, and let {u1, u2, . . . , um} be an or-
thogonal basis for W. Then for any vector x in Rn, the orthogonal projection of x
onto W is given by the formula

xW =
x · u1

u1 · u1
u1 +

x · u2

u2 · u2
u2 + · · ·+

x · um

um · um
um.

Proof. Let

y =
x · u1

u1 · u1
u1 +

x · u2

u2 · u2
u2 + · · ·+

x · um

um · um
um.

This vector is contained in W because it is a linear combination of u1, u2, . . . , um.
Hence we just need to show that x − y is in W⊥, i.e., that ui · (x − y) = 0 for each
i = 1, 2, . . . , m. For u1, we have

u1 · (x − y) = u1 ·
�

x −
x · u1

u1 · u1
u1 −

x · u2

u2 · u2
u2 − · · · −

x · um

um · um
um

�

= u1 · x −
x · u1

u1 · u1
(u1 · u1)− 0− · · · − 0

= 0.

A similar calculation shows that ui · (x − y) = 0 for each i, so x − y is in W⊥, as
desired.

If {u1, u2, . . . , um} is an orthonormal basis for W , then the denominators ui ·ui =
1 go away, so the projection formula becomes even simpler:

xW = (x · u1)u1 + (x · u2)u2 + · · ·+ (x · um)um.

Example. Suppose that L = Span{u} is a line. The set {u} is an orthogonal basis
for L, so the Projection Formula says that for any vector x , we have

x L =
x · u
u · u

u,

as in this example in Section 8.3. See also this example in Section 8.3 and this
example in Section 8.3.
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Suppose that {u1, u2, . . . , um} is an orthogonal basis for a subspace W , and let
Li = Span{ui} for each i = 1,2, . . . , m. Then we see that for any vector x , we have

xW =
x · u1

u1 · u1
u1 +

x · u2

u2 · u2
u2 + · · · +

x · um

um · um
um

= x L1
+ x L2

+ · · · + x Lm
.

In other words, for an orthogonal basis, the projection of x onto W is the sum of the
projections onto the lines spanned by the basis vectors. In this sense, projection
onto a line is the most important example of an orthogonal projection.

Example (Projection onto the x y-plane). Continuing with this example in Sec-
tion 8.3 and this example in Section 8.3, use the projection formula to compute
the orthogonal projection of a vector onto the x y-plane in R3.

Solution. A basis for the x y-plane is given by the two standard coordinate vec-
tors

e1 =





1
0
0



 e2 =





0
1
0



 .

The set {e1, e2} is orthogonal, so for any vector x = (x1, x2, x3), we have

xW =
x · e1

e1 · e1
e1 +

x · e2

e2 · e2
e2 = x1e1 + x2e2 =





x1

x2

0



 .

Use this link to view the online demo

Orthogonal projection of a vector onto the x y-plane in R3. Note that xW is the sum of
the projections of x onto the e1- and e2-coordinate axes (shown in orange and brown,
respectively).

Example (Projection onto a plane in R3). Let

W = Span











1
0
−1



 ,





1
1
1











x =





2
3
−2



 .

Find xW and xW⊥ .

Solution. The vectors

u1 =





1
0
−1



 u2 =





1
1
1





https://ulrikbuchholtz.dk/ila/demos/projection.html?u1=1,0,0&u2=0,1,0&labels=e1,e2&vec=-1.1,2,1.5&range=3&closed
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are orthogonal, so we can use the Projection Formula:

xW =
x · u1

u1 · u1
u1 +

x · u2

u2 · u2
u2 =

4
2





1
0
−1



+
3
3





1
1
1



=





3
1
−1



 .

Then we have

xW⊥ = x − xW =





−1
2
−1



 .

Use this link to view the online demo

Orthogonal projection of a vector onto the plane W. Note that xW is the sum of the
projections of x onto the lines spanned by u1 and u2 (shown in orange and brown,
respectively).

Example (Projection onto a 3-space in R4). Let

W = Span

















1
0
−1

0






,







0
1
0
−1






,







1
1
1
1

















x =







0
1
3
4






.

Compute xW , and find the distance from x to W .

Solution. The vectors

u1 =







1
0
−1

0






u2 =







0
1
0
−1






u3 =







1
1
1
1







are orthogonal, so we can use the Projection Formula:

xW =
x · u1

u1 · u1
u1 +

x · u2

u2 · u2
u2 +

x · u3

u3 · u3
u3

=
−3
2







1
0
−1

0






+
−3
2







0
1
0
−1






+

8
4







1
1
1
1






=

1
2







1
1
7
7







xW⊥ = x − xW =
1
2







−1
1
−1

1






.

The distance from x to W is

∥xW⊥∥=
1
2

p
1+ 1+ 1+ 1= 1.

https://ulrikbuchholtz.dk/ila/demos/projection.html?u1=1,0,-1&u2=1,1,1&vec=2,3,-2&range=3.5&closed
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Now let W be a subspace of Rn with orthogonal basis B = {v1, v2, . . . , vm}, and
let x be a vector in W . Then x = xW , so by the projection formula, we have

x = xW =
x · u1

u1 · u1
u1 +

x · u2

u2 · u2
u2 + · · ·+

x · um

um · um
um.

This gives us a way of expressing x as a linear combination of the basis vectors in
B: we have computed the B-coordinates of x without row reducing!

Recipe: B-coordinates when B is an orthogonal set. Let W be a subspace
of Rn with orthogonal basis B = {u1, u2, . . . , um} and let x be a vector in W .
Then

[x]B =
�

x · u1

u1 · u1
,

x · u2

u2 · u2
, . . . ,

x · um

um · um

�

.

As with orthogonal projections, if {u1, u2, . . . , um} is an orthonormal basis of W ,
then the formula is even simpler:

[x]B =
�

x · u1, x · u2, . . . , x · um

�

.

Example (Computing coordinates with respect to an orthogonal basis). Find the
B-coordinates of x , where

B =
§�

1
2

�

,
�

−4
2

�ª

x =
�

0
3

�

.

Solution. Since

u1 =
�

1
2

�

u2 =
�

−4
2

�

form an orthogonal basis of R2, we have

[x]B =
�

x · u1

u1 · u1
,

x · u2

u2 · u2

�

=
�

3 · 2
12 + 22

,
3 · 2

(−4)2 + 22

�

=
�

6
5

,
3

10

�

.

u1

u2

x

6
5u1

3
10u2
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Use this link to view the online demo

Computing B-coordinates using the Projection Formula.

The following example shows that the Projection Formula does in fact require
an orthogonal basis.

Non-Example (A non-orthogonal basis). Consider the basis B = {v1, v2} of R2,
where

v1 =
�

2
−1/2

�

v2 =
�

1
2

�

.

This is not orthogonal because v1 · v2 = 2− 1 = 1 ̸= 0. Let x =
�1

1

�

. Let us try to
compute x = xR2 using the Projection Formula with respect to the basis B:

xR2 =
x · v1

v1 · v1
v1 +

x · v2

v2 · v2
v2 =

3/2
17/4

�

2
−1/2

�

+
3
5

�

1
2

�

=
�

111/85
87/85

�

̸= x .

Since x = xR2 , we see that the Projection Formula does not compute the orthogonal
projection in this case. Geometrically, the projections of x onto the lines spanned
by v1 and v2 do not sum to x , as we can see from the picture.

v1

v2

x

xSpan{v1}

xSpan{v2}

�111/85
87/85

�

Use this link to view the online demo

When v1 and v2 are not orthogonal, then xR2 = x is not necessarily equal to the sum
(red) of the projections (orange and brown) of x onto the lines spanned by v1 and v2.

You need an orthogonal basis to use the Projection Formula.

https://ulrikbuchholtz.dk/ila/demos/projection.html?u1=1,2&u2=-4,2&vec=0,3&mode=basis&closed&range=4.5
https://ulrikbuchholtz.dk/ila/demos/projection.html?u1=2,-.5&u2=1,2&vec=1,1&range=3&mode=badbasis&labels=v1,v2&closed
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8.4.2 The Gram–Schmidt Process

We saw in the previous subsection that orthogonal projections and B-coordinates
are much easier to compute in the presence of an orthogonal basis for a subspace.
In this subsection, we give a method, called the Gram–Schmidt Process, for com-
puting an orthogonal basis of a subspace.

The Gram–Schmidt Process. Let v1, v2, . . . , vm be a basis for a subspace W of Rn.
Define:

1. u1 = v1

2. u2 = (v2)Span{u1}⊥ = v2 −
v2 · u1

u1 · u1
u1

3. u3 = (v3)Span{u1,u2}⊥ = v3 −
v3 · u1

u1 · u1
u1 −

v3 · u2

u2 · u2
u2

...

m. um = (vm)Span{u1,u2,...,um−1}⊥ = vm −
m−1
∑

i=1

vm · ui

ui · ui
ui.

Then {u1, u2, . . . , um} is an orthogonal basis for the same subspace W.

Proof. First we claim that each ui is in W , and in fact that ui is in Span{v1, v2, . . . , vi}.
Clearly u1 = v1 is in Span{v1}. Then u2 is a linear combination of u1 and v2,
which are both in Span{v1, v2}, so u2 is in Span{v1, v2} as well. Similarly, u3 is a
linear combination of u1, u2, and v3, which are all in Span{v1, v2, v3}, so u3 is in
Span{v1, v2, v3}. Continuing in this way, we see that each ui is in Span{v1, v2, . . . , vi}.

Now we claim that {u1, u2, . . . , um} is an orthogonal set. Let 1 ≤ i < j ≤ m.
Then u j = (v j)Span{u1,u2,...,u j−1}⊥ , so by definition u j is orthogonal to every vector in
Span{u1, u2, . . . , u j−1}. In particular, u j is orthogonal to ui.

We still have to prove that each ui is nonzero. Clearly u1 = v1 ̸= 0. Suppose that
ui = 0. Then (vi)Span{u1,u2,...,ui−1}⊥ = 0, which means that vi is in Span{u1, u2, . . . , ui−1}.
But each u1, u2, . . . , ui−1 is in Span{v1, v2, . . . , vi−1} by the first paragraph, so vi is in
Span{v1, v2, . . . , vi−1}. This contradicts the increasing span criterion in Section 3.2;
therefore, ui must be nonzero.

The previous two paragraphs justify the use of the projection formula in the
equalities

(vi)Span{u1,u2,...,ui−1}⊥ = vi − (vi)Span{u1,u2,...,ui−1} = vi −
i−1
∑

j=1

vi · u j

u j · u j
u j

in the statement of the theorem.
Since {u1, u2, . . . , um} is an orthogonal set, it is linearly independent. Thus it

is a set of m linearly independent vectors in W , so it is a basis for W by the basis
theorem in Section 3.4. Similarly, for every i, we saw that the set {u1, u2, . . . , ui}
is contained in the i-dimensional subspace Span{v1, v2, . . . , vi}, so {u1, u2, . . . , ui}
is an orthogonal basis for Span{v1, v2, . . . , vi}.
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Example (Two vectors). Find an orthogonal basis {u1, u2} for W = Span{v1, v2},
where

v1 =





1
1
0



 v2 =





1
1
1



 .

Solution. We run Gram–Schmidt: first take u1 = v1, then

u2 = v2 −
v2 · u1

u1 · u1
u1 =





1
1
1



−
2
2





1
1
0



=





0
0
1



 .

Then {u1, u2} is an orthogonal basis for W : indeed, it is clear that u1 · u2 = 0.
Geometrically, we are simply replacing v2 with the part of v2 that is perpendic-

ular to the line L1 = Span{v1}:

L1

W

v1 = u1

v2
u2 = (v2)L⊥1

Example (Three vectors). Find an orthogonal basis {u1, u2, u3} for W = Span{v1, v2, v3}=
R3, where

v1 =





1
1
0



 v2 =





1
1
1



 v3 =





3
1
1



 .
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Solution. We run Gram–Schmidt:

1. u1 = v1 =





1
1
0





2. u2 = v2 −
v2 · u1

u1 · u1
u1 =





1
1
1



−
2
2





1
1
0



=





0
0
1





3. u3 = v3 −
v3 · u1

u1 · u1
u1 −

v3 · u2

u2 · u2
u2

=





3
1
1



−
4
2





1
1
0



−
1
1





0
0
1



=





1
−1

0



 .

Then {u1, u2, u3} is an orthogonal basis for W : indeed, we have

u1 · u2 = 0 u1 · u3 = 0 u2 · u3 = 0.

Geometrically, once we have u1 and u2, we replace v3 by the part that is or-
thogonal to W2 = Span{u1, u2}= Span{v1, v2}:

W2

L1

u1

u2

v3

u 3
= (

v3
)W⊥2

(v3 )W
2
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Example (Three vectors in R4). Find an orthogonal basis {u1, u2, u3} for W =
Span{v1, v2, v3}, where

v1 =







1
1
1
1






v2 =







−1
4
4
−1






v3 =







4
−2
−2

0






.

Solution. We run Gram–Schmidt:

1. u1 = v1 =







1
1
1
1







2. u2 = v2 −
v2 · u1

u1 · u1
u1 =







−1
4
4
−1






−

6
4







1
1
1
1






=







−5/2
5/2
5/2
−5/2







3. u3 = v3 −
v3 · u1

u1 · u1
u1 −

v3 · u2

u2 · u2
u2

=







4
−2
−2

0






−

0
24







1
1
1
1






−
−20
25







−5/2
5/2
5/2
−5/2






=







2
0
0
−2






.

Then {u1, u2, u3} is an orthogonal basis for W .

We saw in the proof of the Gram–Schmidt Process that for every i between 1
and m, the set {u1, u2, . . . , ui} is a an orthogonal basis for Span{v1, v2, . . . , vi}.

If we had started with a spanning set {v1, v2, . . . , vm} which is linearly depen-
dent, then for some i, the vector vi is in Span{v1, v2, . . . , vi−1} by the increasing
span criterion in Section 3.2. Hence

0= (vi)Span{v1,v2,...,vi−1}⊥ = (vi)Span{u1,u2,...,ui−1}⊥ = ui.

You can use the Gram–Schmidt Process to produce an orthogonal basis from
any spanning set: if some ui = 0, just throw away ui and vi, and continue.
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8.4.3 Two Methods to Compute the Projection

We have now presented two methods for computing the orthogonal projection of
a vector: this theorem in Section 8.3 involves row reduction, and the projection
formula requires an orthogonal basis. Here are some guidelines for which to use
in a given situation.

1. If you already have an orthogonal basis, it is almost always easier to use the
projection formula. This often happens in the sciences.

2. If you are going to have to compute the projections of many vectors onto the
same subspace, it is worth your time to run Gram–Schmidt to produce an
orthogonal basis, so that you can use the projection formula.

3. If you only have to project one or a few vectors onto a subspace, it is faster
to use the theorem in Section 8.3. This is the method we will follow in
Section 8.5.

8.5 The Method of Least Squares

Objectives

1. Learn examples of best-fit problems.

2. Learn to turn a best-fit problem into a least-squares problem.

3. Recipe: find a least-squares solution (two ways).

4. Picture: geometry of a least-squares solution.

5. Vocabulary: least-squares solution.

In this section, we answer the following important question:

Suppose that Ax = b does not have a solution. What is the best ap-
proximate solution?

For our purposes, the best approximate solution is called the least-squares solution.
We will present two methods for finding least-squares solutions, and we will give
several applications to best-fit problems.
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8.5.1 Least-Squares Solutions

We begin by clarifying exactly what we will mean by a “best approximate solution”
to an inconsistent matrix equation Ax = b.

Definition. Let A be an m× n matrix and let b be a vector in Rm. A least-squares
solution of the matrix equation Ax = b is a vector bx in Rn such that

dist(b, Abx)≤ dist(b, Ax)

for all other vectors x in Rn.

Recall that dist(v, w) = ∥v−w∥ is the distance between the vectors v and w. The
term “least squares” comes from the fact that dist(b, Ax) = ∥b−Abx∥ is the square
root of the sum of the squares of the entries of the vector b−Abx . So a least-squares
solution minimizes the sum of the squares of the differences between the entries
of Abx and b. In other words, a least-squares solution solves the equation Ax = b
as closely as possible, in the sense that the sum of the squares of the difference
b− Ax is minimized.

Least Squares: Picture Suppose that the equation Ax = b is inconsistent. Recall
from this note in Section 2.4 that the column space of A is the set of all other vectors
c such that Ax = c is consistent. In other words, Col(A) is the set of all vectors of the
form Ax . Hence, the closest vector of the form Ax to b is the orthogonal projection
of b onto Col(A). This is denoted bCol(A), following this notation in Section 8.3.

Col A

Ax

Ax

Ax
Abx = bCol(A)

b

b− Abx = bCol(A)⊥
0

A least-squares solution of Ax = b is a solution bx of the consistent equation
Ax = bCol(A)

Note. If Ax = b is consistent, then bCol(A) = b, so that a least-squares solution is
the same as a usual solution.
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Where is bx in this picture? If v1, v2, . . . , vn are the columns of A, then

Abx = A









bx1

bx2
...
bxn









= bx1v1 + bx2v2 + · · ·+ bxnvn.

Hence the entries of bx are the “coordinates” of bCol(A) with respect to the spanning
set {v1, v2, . . . , vm} of Col(A). (They are honest B-coordinates if the columns of A
are linearly independent.)

Col A

v1

v2

bx1v1

bx2v2

Abx = bCol(A)

b

b− Abx = bCol(A)⊥
0

Use this link to view the online demo

The violet plane is Col(A). The closest that Ax can get to b is the closest vector on
Col(A) to b, which is the orthogonal projection bCol(A) (in blue). The vectors v1, v2 are
the columns of A, and the coefficients of bx are the lengths of the green lines. Click and
drag b to move it.

We learned to solve this kind of orthogonal projection problem in Section 8.3.

Theorem. Let A be an m× n matrix and let b be a vector in Rm. The least-squares
solutions of Ax = b are the solutions of the matrix equation

AT Ax = AT b

Proof. By this theorem in Section 8.3, if bx is a solution of the matrix equation
AT Ax = AT b, then Abx is equal to bCol(A). We argued above that a least-squares
solution of Ax = b is a solution of Ax = bCol(A).

https://ulrikbuchholtz.dk/ila/demos/leastsquares.html?v1=0,1,0&v2=1.1,0,-.2&range=2&vec=1.4,-1.1,1.45
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In particular, finding a least-squares solution means solving a consistent system
of linear equations. We can translate the above theorem into a recipe:

Recipe 1: Compute a least-squares solution. Let A be an m× n matrix and
let b be a vector in Rn. Here is a method for computing a least-squares solution
of Ax = b:

1. Compute the matrix AT A and the vector AT b.

2. Form the augmented matrix for the matrix equation AT Ax = AT b, and
row reduce.

3. This equation is always consistent, and any solution bx is a least-squares
solution.

To reiterate: once you have found a least-squares solution bx of Ax = b, then
bCol(A) is equal to Abx .

Example. Find the least-squares solutions of Ax = b where:

A=





0 1
1 1
2 1



 b =





6
0
0



 .

What quantity is being minimized?

Solution. We have

AT A=
�

0 1 2
1 1 1

�





0 1
1 1
2 1



=
�

5 3
3 3

�

and

AT b =
�

0 1 2
1 1 1

�





6
0
0



=
�

0
6

�

.

We form an augmented matrix and row reduce:
�

5 3 0
3 3 6

�

RREF
−−→

�

1 0 −3
0 1 5

�

.

Therefore, the only least-squares solution is bx =
�−3

5

�

.
This solution minimizes the distance from Abx to b, i.e., the sum of the squares

of the entries of b− Abx = b− bCol(A) = bCol(A)⊥ . In this case, we have

∥b− Abx∥=























6
0
0



−





5
2
−1























=























1
−2

1























=
Æ

12 + (−2)2 + 12 =
p

6.
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Therefore, bCol(A) = Abx is
p

6 units from b.
In the following picture, v1, v2 are the columns of A:

Col A

v2

v1
5v2

−3v1p
6

bCol(A) = A
�

−3
5

�

b

Use this link to view the online demo

The violet plane is Col(A). The closest that Ax can get to b is the closest vector on
Col(A) to b, which is the orthogonal projection bCol(A) (in blue). The vectors v1, v2

are the columns of A, and the coefficients of bx are the B-coordinates of bCol(A), where
B = {v1, v2}.

Example. Find the least-squares solutions of Ax = b where:

A=





2 0
−1 1

0 2



 b =





1
0
−1



 .

Solution. We have

AT A=
�

2 −1 0
0 1 2

�





2 0
−1 1

0 2



=
�

5 −1
−1 5

�

and

AT b =
�

2 −1 0
0 1 2

�





1
0
−1



=
�

2
−2

�

.

We form an augmented matrix and row reduce:
�

5 −1 2
−1 5 −2

�

RREF
−−→

�

1 0 1/3
0 1 −1/3

�

.

https://ulrikbuchholtz.dk/ila/demos/leastsquares.html?v1=0,1,2&v2=1,1,1&range=6.5&vec=6,0,0&camera=3,-1.5,-.1
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Therefore, the only least-squares solution is bx = 1
3

� 1
−1

�

.

Use this link to view the online demo

The red plane is Col(A). The closest that Ax can get to b is the closest vector on
Col(A) to b, which is the orthogonal projection bCol(A) (in blue). The vectors v1, v2

are the columns of A, and the coefficients of bx are the B-coordinates of bCol(A), where
B = {v1, v2}.

The reader may have noticed that we have been careful to say “the least-squares
solutions” in the plural, and “a least-squares solution” using the indefinite article.
This is because a least-squares solution need not be unique: indeed, if the columns
of A are linearly dependent, then Ax = bCol(A) has infinitely many solutions. The
following theorem, which gives equivalent criteria for uniqueness, is an analogue
of this corollary in Section 8.3.

Theorem. Let A be an m× n matrix and let b be a vector in Rm. The following are
equivalent:

1. Ax = b has a unique least-squares solution.

2. The columns of A are linearly independent.

3. AT A is invertible.

In this case, the least-squares solution is

bx = (AT A)−1AT b.

Proof. The set of least-squares solutions of Ax = b is the solution set of the consis-
tent equation AT Ax = AT b, which is a translate of the solution set of the homoge-
neous equation AT Ax = 0. Since AT A is a square matrix, the equivalence of 1 and 3
follows from the invertible matrix theorem in Section 6.1. The set of least squares-
solutions is also the solution set of the consistent equation Ax = bCol(A), which has
a unique solution if and only if the columns of A are linearly independent by this
important note in Section 3.2.

Example (Infinitely many least-squares solutions). Find the least-squares solu-
tions of Ax = b where:

A=





1 0 1
1 1 −1
1 2 −3



 b =





6
0
0



 .

Solution. We have

AT A=





3 3 −3
3 5 −7
−3 −7 11



 AT b =





6
0
6



 .

https://ulrikbuchholtz.dk/ila/demos/leastsquares.html?v1=2,-1,0&v2=0,1,2&vec=1,0,-1&range=3


8.5. THE METHOD OF LEAST SQUARES 431

We form an augmented matrix and row reduce:





3 3 −3 6
3 5 −7 0
−3 −7 11 6





RREF
−−→





1 0 1 5
0 1 −2 −3
0 0 0 0



 .

The free variable is x3, so the solution set is

( x1 = −x3 + 5
x2 = 2x3 − 3
x3 = x3

parametric
−−−−−→
vector form

bx =





x1

x2

x3



= x3





−1
2
1



+





5
−3

0



 .

For example, taking x3 = 0 and x3 = 1 gives the least-squares solutions

bx =





5
−3

0



 and bx =





4
−1

1



 .

Geometrically, we see that the columns v1, v2, v3 of A are coplanar:

Col A

v1

v2

v3 bCol(A) = Abx

b

Therefore, there are many ways of writing bCol(A) as a linear combination of
v1, v2, v3.

Use this link to view the online demo

The three columns of A are coplanar, so there are many least-squares solutions. (The
demo picks one solution when you move b.)

https://ulrikbuchholtz.dk/ila/demos/leastsquares.html?v1=1,1,1&v2=0,1,2&v3=1,-1,-3&vec=6,0,0&range=6.5&camera=3,-1.5,-.1
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As usual, calculations involving projections become easier in the presence of an
orthogonal set. Indeed, if A is an m×n matrix with orthogonal columns u1, u2, . . . , um,
then we can use the projection formula in Section 8.4 to write

bCol(A) =
b · u1

u1 · u1
u1 +

b · u2

u2 · u2
u2 + · · ·+

b · um

um · um
um = A









(b · u1)/(u1 · u1)
(b · u2)/(u2 · u2)

...
(b · um)/(um · um)









.

Note that the least-squares solution is unique in this case, since an orthogonal set
is linearly independent.

Recipe 2: Compute a least-squares solution. Let A be an m× n matrix with
orthogonal columns u1, u2, . . . , um, and let b be a vector in Rn. Then the least-
squares solution of Ax = b is the vector

bx =
�

b · u1

u1 · u1
,

b · u2

u2 · u2
, . . . ,

b · um

um · um

�

.

This formula is particularly useful in the sciences, as matrices with orthogonal
columns often arise in nature.

Example. Find the least-squares solution of Ax = b where:

A=







1 0 1
0 1 1
−1 0 1

0 −1 1






b =







0
1
3
4






.

Solution. Let u1, u2, u3 be the columns of A. These form an orthogonal set, so

bx =
�

b · u1

u1 · u1
,

b · u2

u2 · u2
,

b · u3

u3 · u3

�

=
�

−3
2

,
−3
2

,
8
4

�

=
�

−
3
2

, −
3
2

, 2
�

.

Compare this example in Section 8.4.

8.5.2 Best-Fit Problems

In this subsection we give an application of the method of least squares to data
modeling. We begin with a basic example.

Example (Best-fit line). Suppose that we have measured three data points

(0, 6), (1, 0), (2,0),

and that our model for these data asserts that the points should lie on a line. Of
course, these three points do not actually lie on a single line, but this could be due
to errors in our measurement. How do we predict which line they are supposed
to lie on?
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(0, 6)

(1,0)
(2,0)

The general equation for a (non-vertical) line is

y = M x + B.

If our three data points were to lie on this line, then the following equations would
be satisfied:

6= M · 0+ B
0= M · 1+ B
0= M · 2+ B.

(8.5.1)

In order to find the best-fit line, we try to solve the above equations in the un-
knowns M and B. As the three points do not actually lie on a line, there is no
actual solution, so instead we compute a least-squares solution.

Putting our linear equations into matrix form, we are trying to solve Ax = b
for

A=





0 1
1 1
2 1



 x =
�

M
B

�

b =





6
0
0



 .

We solved this least-squares problem in this example: the only least-squares solu-
tion to Ax = b is bx =

�M
B

�

=
�−3

5

�

, so the best-fit line is

y = −3x + 5.
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(0,6)

(1, 0)
(2, 0)

y
=
−

3x
+

5

What exactly is the line y = f (x) = −3x + 5 minimizing? The least-squares
solution bx minimizes the sum of the squares of the entries of the vector b − Abx .
The vector b is the left-hand side of (8.5.1), and

A
�

−3
5

�

=





−3(0) + 5
−3(1) + 5
−3(2) + 5



=





f (0)
f (1)
f (2)



 .

In other words, Abx is the vector whose entries are the y-coordinates of the graph
of the line at the values of x we specified in our data points, and b is the vector
whose entries are the y-coordinates of those data points. The difference b−Abx is
the vertical distance of the graph from the data points:
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(0, 6)

(1,0)
(2,0)

−1

2

−1

y
=
−

3x
+

5

b− Abx =





6
0
0



− A
�

−3
5

�

=





−1
2
−1





The best-fit line minimizes the sum of the squares of these vertical distances.

Interactive: Best-fit line.

Use this link to view the online demo

The best-fit line minimizes the sum of the squares of the vertical distances (violet).
Click and drag the points to see how the best-fit line changes.

Example (Best-fit parabola). Find the parabola that best approximates the data
points

(−1, 1/2), (1, −1), (2, −1/2), (3, 2).

https://ulrikbuchholtz.dk/ila/demos/bestfit.html?v1=0,6&v2=1,0&v3=2,0&range=7
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(−1, 1/2)

(1,−1)

(2,−1/2)

(3, 2)

What quantity is being minimized?

Solution. The general equation for a parabola is

y = Bx2 + C x + D.

If the four points were to lie on this parabola, then the following equations would
be satisfied:

1
2
= B(−1)2 + C(−1) + D

−1 = B(1)2 + C(1) + D

−
1
2
= B(2)2 + C(2) + D

2 = B(3)2 + C(3) + D.

(8.5.2)

We treat this as a system of equations in the unknowns B, C , D. In matrix form,
we can write this as Ax = b for

A=







1 −1 1
1 1 1
4 2 1
9 3 1






x =





B
C
D



 b =







1/2
−1

−1/2
2






.

We find a least-squares solution by multiplying both sides by the transpose:

AT A=





99 35 15
35 15 5
15 5 4



 AT b =





31/2
7/2

1



 ,

then forming an augmented matrix and row reducing:




99 35 15 31/2
35 15 5 7/2
15 5 4 1





RREF
−−→





1 0 0 53/88
0 1 0 −379/440
0 0 1 −41/44



 =⇒ bx =





53/88
−379/440
−41/44



 .
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The best-fit parabola is

y =
53
88

x2 −
379
440

x −
41
44

.

Multiplying through by 88, we can write this as

88y = 53x2 −
379

5
x − 82.

(−1, 0.5)

(1,−1) (2,−0.5)

(3,2)

88y = 53x2 −
379

5
x − 82

Now we consider what exactly the parabola y = f (x) is minimizing. The least-
squares solution bx minimizes the sum of the squares of the entries of the vector
b− Abx . The vector b is the left-hand side of (8.5.2), and

Abx =









53
88(−1)2 − 379

440(−1)− 41
44

53
88(1)

2 − 379
440(1)−

41
44

53
88(2)

2 − 379
440(2)−

41
44

53
88(3)

2 − 379
440(3)−

41
44









=







f (−1)
f (1)
f (2)
f (3)






.

In other words, Abx is the vector whose entries are the y-coordinates of the graph
of the parabola at the values of x we specified in our data points, and b is the
vector whose entries are the y-coordinates of those data points. The difference
b− Abx is the vertical distance of the graph from the data points:
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b− Abx =







1/2
−1

−1/2
2






− A





53/88
−379/440
−41/44



=







−7/220
21/110
−14/55
21/220







88y = 53x2 −
379

5
x − 82

− 7
220

21
110

−14
55

21
220

The best-fit parabola minimizes the sum of the squares of these vertical dis-
tances.

Use this link to view the online demo

The best-fit parabola minimizes the sum of the squares of the vertical distances (vio-
let). Click and drag the points to see how the best-fit parabola changes.

Example (Best-fit linear function). Find the linear function f (x , y) that best ap-
proximates the following data:

x y f (x , y)
1 0 0
0 1 1
−1 0 3

0 −1 4

What quantity is being minimized?

Solution. The general equation for a linear function in two variables is

f (x , y) = Bx + C y + D.

We want to solve the following system of equations in the unknowns B, C , D:

B(1) + C(0) + D = 0
B(0) + C(1) + D = 1

B(−1) + C(0) + D = 3
B(0) + C(−1) + D = 4.

(8.5.3)

https://ulrikbuchholtz.dk/ila/demos/bestfit.html?func=A*x^2+B*x+C&v1=-1,.5&v2=1,-1&v3=2,-.5&v4=3,2&range=5
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In matrix form, we can write this as Ax = b for

A=







1 0 1
0 1 1
−1 0 1

0 −1 1






x =





B
C
D



 b =







0
1
3
4






.

We observe that the columns u1, u2, u3 of A are orthogonal, so we can use recipe 2:

bx =
�

b · u1

u1 · u1
,

b · u2

u2 · u2
,

b · u3

u3 · u3

�

=
�

−3
2

,
−3
2

,
8
4

�

=
�

−
3
2

, −
3
2

, 2
�

.

Therefore, the best-fit linear equation is

f (x , y) = −
3
2

x −
3
2

y + 2.

Here is a picture of the graph of f (x , y):

f (1,0)

(1, 0, 0)

f (0,1)

(0, 1,1)

f (−1, 0)

(−1, 0,3)f (0,−1)

(0,−1, 4)
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Now we consider what quantity is being minimized by the function f (x , y).
The least-squares solution bx minimizes the sum of the squares of the entries of the
vector b− Abx . The vector b is the right-hand side of (8.5.3), and

Abx =









−3
2(1) −

3
2(0) + 2

−3
2(0) −

3
2(1) + 2

−3
2(−1) − 3

2(0) + 2
−3

2(0) −
3
2(−1) + 2









=







f (1,0)
f (0,1)

f (−1,0)
f (0,−1)






.

In other words, Abx is the vector whose entries are the values of f evaluated on
the points (x , y) we specified in our data table, and b is the vector whose entries
are the desired values of f evaluated at those points. The difference b − Abx is
the vertical distance of the graph from the data points, as indicated in the above
picture. The best-fit linear function minimizes the sum of these vertical distances.

Use this link to view the online demo

The best-fit linear function minimizes the sum of the squares of the vertical distances
(violet). Click and drag the points to see how the best-fit linear function changes.

All of the above examples have the following form: some number of data points
(x , y) are specified, and we want to find a function

y = B1 g1(x) + B2 g2(x) + · · ·+ Bm gm(x)

that best approximates these points, where g1, g2, . . . , gm are fixed functions of
x . Indeed, in the best-fit line example we had g1(x) = x and g2(x) = 1; in the
best-fit parabola example we had g1(x) = x2, g2(x) = x , and g3(x) = 1; and
in the best-fit linear function example we had g1(x1, x2) = x1, g2(x1, x2) = x2,
and g3(x1, x2) = 1 (in this example we take x to be a vector with two entries).
We evaluate the above equation on the given data points to obtain a system of
linear equations in the unknowns B1, B2, . . . , Bm—once we evaluate the gi, they
just become numbers, so it does not matter what they are—and we find the least-
squares solution. The resulting best-fit function minimizes the sum of the squares
of the vertical distances from the graph of y = f (x) to our original data points.

To emphasize that the nature of the functions gi really is irrelevant, consider
the following example.

Example (Best-fit trigonometric function). What is the best-fit function of the form

y = B + C cos(x) + D sin(x) + E cos(2x) + F sin(2x) + G cos(3x) +H sin(3x)

passing through the points
�

−4
−1

�

,
�

−3
0

�

,
�

−2
−1.5

�

,
�

−1
.5

�

,
�

0
1

�

,
�

1
−1

�

,
�

2
−.5

�

,
�

3
2

�

,
�

4
−1

�

?

https://ulrikbuchholtz.dk/ila/demos/bestfit.html?func=A*x+B*y+C&v1=1,0,0&v2=0,1,1&v3=-1,0,3&v4=0,-1,4&range=5
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(−4,−1)

(−3, 0)

(−2,−1.5)

(−1, .5)

(0,1)

(1,−1)

(2,−.5)

(3, 2)

(4,−1)

Solution. We want to solve the system of equations

−1 = B + C cos(−4) + D sin(−4) + E cos(−8) + F sin(−8) + G cos(−12) + H sin(−12)
0 = B + C cos(−3) + D sin(−3) + E cos(−6) + F sin(−6) + G cos(−9) + H sin(−9)

−1.5 = B + C cos(−2) + D sin(−2) + E cos(−4) + F sin(−4) + G cos(−6) + H sin(−6)
0.5 = B + C cos(−1) + D sin(−1) + E cos(−2) + F sin(−2) + G cos(−3) + H sin(−3)

1 = B + C cos(0) + D sin(0) + E cos(0) + F sin(0) + G cos(0) + H sin(0)
−1 = B + C cos(1) + D sin(1) + E cos(2) + F sin(2) + G cos(3) + H sin(3)
−0.5 = B + C cos(2) + D sin(2) + E cos(4) + F sin(4) + G cos(6) + H sin(6)

2 = B + C cos(3) + D sin(3) + E cos(6) + F sin(6) + G cos(9) + H sin(9)
−1 = B + C cos(4) + D sin(4) + E cos(8) + F sin(8) + G cos(12) + H sin(12).

All of the terms in these equations are numbers, except for the unknowns
B, C , D, E, F, G, H:

−1 = B − 0.6536C + 0.7568D − 0.1455E − 0.9894F + 0.8439G + 0.5366H
0 = B − 0.9900C − 0.1411D + 0.9602E + 0.2794F − 0.9111G − 0.4121H

−1.5 = B − 0.4161C − 0.9093D − 0.6536E + 0.7568F + 0.9602G + 0.2794H
0.5 = B + 0.5403C − 0.8415D − 0.4161E − 0.9093F − 0.9900G − 0.1411H

1 = B + C + E + G
−1 = B + 0.5403C + 0.8415D − 0.4161E + 0.9093F − 0.9900G + 0.1411H
−0.5 = B − 0.4161C + 0.9093D − 0.6536E − 0.7568F + 0.9602G − 0.2794H

2 = B − 0.9900C + 0.1411D + 0.9602E − 0.2794F − 0.9111G + 0.4121H
−1 = B − 0.6536C − 0.7568D − 0.1455E + 0.9894F + 0.8439G − 0.5366H.

Hence we want to solve the least-squares problem
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

























1 −0.6536 0.7568 −0.1455 −0.9894 0.8439 0.5366
1 −0.9900 −0.1411 0.9602 0.2794 −0.9111 −0.4121
1 −0.4161 −0.9093 −0.6536 0.7568 0.9602 0.2794
1 0.5403 −0.8415 −0.4161 −0.9093 −0.9900 −0.1411
1 1 0 1 0 1 0
1 0.5403 0.8415 −0.4161 0.9093 −0.9900 0.1411
1 −0.4161 0.9093 −0.6536 −0.7568 0.9602 −0.2794
1 −0.9900 0.1411 0.9602 −0.2794 −0.9111 0.4121
1 −0.6536 −0.7568 −0.1455 0.9894 0.8439 −0.5366













































B
C
D
E
F
G
H



















=



























−1
0

−1.5
0.5

1
−1
−0.5

2
−1



























.

We find the least-squares solution with the aid of a computer:

bx ≈



















−0.1435
0.2611
−0.2337

1.116
−0.5997
−0.2767

0.1076



















.

Therefore, the best-fit function is

y ≈ −0.1435+ 0.2611cos(x)− 0.2337 sin(x) + 1.116cos(2x)− 0.5997 sin(2x)
− 0.2767 cos(3x) + 0.1076 sin(3x).

(−4,−1)

(−3, 0)

(−2,−1.5)

(−1, .5)

(0, 1)

(1,−1)

(2,−.5)

(3, 2)

(4,−1)

y ≈ −0.14+ 0.26cos(x)− 0.23 sin(x) + 1.11 cos(2x)− 0.60 sin(2x)− 0.28 cos(3x) + 0.11 sin(3x)



8.5. THE METHOD OF LEAST SQUARES 443

As in the previous examples, the best-fit function minimizes the sum of the
squares of the vertical distances from the graph of y = f (x) to the data points.

Use this link to view the online demo

The best-fit function minimizes the sum of the squares of the vertical distances (violet).
Click and drag the points to see how the best-fit function changes.

The next example has a somewhat different flavour from the previous ones.

Example (Best-fit ellipse). Find the best-fit ellipse through the points

(0,2), (2,1), (1,−1), (−1,−2), (−3, 1), (−1,−1).

(0,2)

(2, 1)

(1,−1)

(−1,−2)

(−3, 1)
(−1,1)

What quantity is being minimized?

Solution. The general equation for an ellipse (actually, for a nondegenerate conic
section) is

x2 + B y2 + C x y + Dx + E y + F = 0.

This is an implicit equation: the ellipse is the set of all solutions of the equation,
just like the unit circle is the set of solutions of x2 + y2 = 1. To say that our data
points lie on the ellipse means that the above equation is satisfied for the given

https://ulrikbuchholtz.dk/ila/demos/bestfit.html?func=A+B*cos(x)+C*sin(x)+D*cos(2*x)+EE*sin(2*x)+F*cos(3*x)+G*sin(3*x)&v1=-4,-1&v2=-3,0&v3=-2,-1.5&v4=-1,.5&v5=0,1&v6=1,-1&v7=2,-.5&v8=3,2&v9=4,-1&range=5
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values of x and y:

(0)2 + B(2)2 + C(0)(2) + D(0) + E(2) + F = 0
(2)2 + B(1)2 + C(2)(1) + D(2) + E(1) + F = 0
(1)2 + B(−1)2 + C(1)(−1) + D(1) + E(−1) + F = 0
(−1)2 + B(−2)2 + C(−1)(−2) + D(−1) + E(−2) + F = 0
(−3)2 + B(1)2 + C(−3)(1) + D(−3) + E(1) + F = 0
(−1)2 + B(−1)2 + C(−1)(−1) + D(−1) + E(−1) + F = 0.

(8.5.4)

To put this in matrix form, we move the constant terms to the right-hand side of
the equals sign; then we can write this as Ax = b for

A=















4 0 0 2 1
1 2 2 1 1
1 −1 1 −1 1
4 2 −1 −2 1
1 −3 −3 1 1
1 1 −1 −1 1















x =











B
C
D
E
F











b =















0
−4
−1
−1
−9
−1















.

We compute

AT A=











36 7 −5 0 12
7 19 9 −5 1
−5 9 16 1 −2

0 −5 1 12 0
12 1 −2 0 6











AT b =











−19
17
20
−9
−16











.

We form an augmented matrix and row reduce:










36 7 −5 0 12 −19
7 19 9 −5 1 17
−5 9 16 1 −2 20

0 −5 1 12 0 −9
12 1 −2 0 6 −16











RREF
−−→











1 0 0 0 0 405/266
0 1 0 0 0 −89/133
0 0 1 0 0 201/133
0 0 0 1 0 −123/266
0 0 0 0 1 −687/133











.

The least-squares solution is

bx =











405/266
−89/133
201/133
−123/266
−687/133











,

so the best-fit ellipse is

x2 +
405
266

y2 −
89

133
x y +

201
133

x −
123
266

y −
687
133

= 0.

Multiplying through by 266, we can write this as

266x2 + 405y2 − 178x y + 402x − 123y − 1374= 0.
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(0,2)

(2, 1)

(1,−1)

(−1,−2)

(−3, 1)
(−1,1)

266x2 + 405y2 − 178x y + 402x − 123y − 1374= 0

Now we consider the question of what quantity is minimized by this ellipse.
The least-squares solution bx minimizes the sum of the squares of the entries of
the vector b−Abx , or equivalently, of Abx − b. The vector −b contains the constant
terms of the left-hand sides of (8.5.4), and

Abx =



















405
266(2)

2 − 89
133(0)(2) +

201
133(0) −

123
266(2) −

687
133

405
266(1)

2 − 89
133(2)(1) +

201
133(2) −

123
266(1) −

687
133

405
266(−1)2 − 89

133(1)(−1) + 201
133(1) −

123
266(−1) − 687

133
405
266(−2)2 − 89

133(−1)(−2) + 201
133(−1) − 123

266(−2) − 687
133

405
266(1)

2 − 89
133(−3)(1) + 201

133(−3) − 123
266(1) −

687
133

405
266(−1)2 − 89

133(−1)(−1) + 201
133(−1) − 123

266(−1) − 687
133



















contains the rest of the terms on the left-hand side of (8.5.4). Therefore, the
entries of Abx − b are the quantities obtained by evaluating the function

f (x , y) = x2 +
405
266

y2 −
89

133
x y +

201
133

x −
123
266

y −
687
133

on the given data points.
If our data points actually lay on the ellipse defined by f (x , y) = 0, then eval-

uating f (x , y) on our data points would always yield zero, so Abx − b would be
the zero vector. This is not the case; instead, Abx − b contains the actual values of
f (x , y) when evaluated on our data points. The quantity being minimized is the
sum of the squares of these values:

minimized=

f (0,2)2 + f (2,1)2 + f (1,−1)2 + f (−1,−2)2 + f (−3, 1)2 + f (−1,−1)2.
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One way to visualize this is as follows. We can put this best-fit problem into the
framework of this example by asking to find an equation of the form

f (x , y) = x2 + B y2 + C x y + Dx + E y + F

which best approximates the data table

x y f (x , y)
0 2 0
2 1 0
1 −1 0
−1 −2 0
−3 1 0
−1 −1 0.

The resulting function minimizes the sum of the squares of the vertical distances
from these data points (0, 2,0), (2,1, 0), . . ., which lie on the x y-plane, to the
graph of f (x , y).

Use this link to view the online demo

The best-fit ellipse minimizes the sum of the squares of the vertical distances (violet)
from the points (x , y, 0) to the graph of f (x , y) on the left. The ellipse itself is the
zero set of f (x , y), on the right. Click and drag the points on the right to see how the
best-fit ellipse changes. Can you arrange the points so that the best-fit conic section
is actually a hyperbola?

Note. Gauss invented the method of least squares to find a best-fit ellipse: he
correctly predicted the (elliptical) orbit of the asteroid Ceres as it passed behind
the sun in 1801.

https://ulrikbuchholtz.dk/ila/demos/bestfit-implicit.html?func=x^2+A*y^2+B*x*y+C*x+D*y+EE&v1=0,2&v2=2,1&v3=1,-1&v4=-1,-2&v5=-3,1&v6=-1,1&range=5&rangez=25&camera1=-2.14,.814,1.69


Appendix A

Complex Numbers

In this Appendix we give a brief review of the arithmetic and basic properties of
the complex numbers.

As motivation, notice that the rotation matrix

A=
�

0 −1
1 0

�

has characteristic polynomial f (λ) = λ2 + 1. A zero of this function is a square
root of −1. If we want this polynomial to have a root, then we have to use a larger
number system: we need to declare by fiat that there exists a square root of −1.

Definition.

1. The imaginary number i is defined to satisfy the equation i2 = −1.

2. A complex number is a number of the form a + bi, where a, b are real
numbers.

The set of all complex numbers is denoted C.

The real numbers are just the complex numbers of the form a+0i, so that R is
contained in C.

We can identify C with R2 by a+ bi←→
�a

b

�

. So when we draw a picture of C,
we draw the plane:

real axis

imaginary axis

1

i

1− i
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Arithmetic of Complex Numbers. We can perform all of the usual arithmetic
operations on complex numbers: add, subtract, multiply, divide, absolute value.
There is also an important new operation called complex conjugation.

• Addition is performed componentwise:

(a+ bi) + (c + di) = (a+ c) + (b+ d)i.

• Multiplication is performed using distributivity and i2 = −1:

(a+ bi)(c + di) = ac + adi + bci + bdi2 = (ac − bd) + (ad + bc)i.

• Complex conjugation replaces i with −i, and is denoted with a bar:

a+ bi = a− bi.

The number a+ bi is called the complex conjugate of a + bi. One checks
that for any two complex numbers z, w, we have

z +w= z +w and zw= z ·w.

Also, (a+ bi)(a− bi) = a2 + b2, so zz is a nonnegative real number for any
complex number z.

• The absolute value of a complex number z is the real number |z|=
p

zz:

|a+ bi|=
p

a2 + b2.

One chacks that |zw|= |z| · |w|.

• Division by a nonzero real number proceeds componentwise:

a+ bi
c
=

a
c
+

b
c

i.

• Division by a nonzero complex number requires multiplying the numerator
and denominator by the complex conjugate of the denominator:

z
w
=

zw
ww
=

zw
|w|2

.

For example,
1+ i
1− i

=
(1+ i)2

12 + (−1)2
=

1+ 2i + i2

2
= i.

• The real and imaginary parts of a complex number are

Re(a+ bi) = a Im(a+ bi) = b.
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The point of introducing complex numbers is to find roots of polynomials. It
turns out that introducing i is sufficent to find the roots of any polynomial.

Fundamental Theorem of Algebra. Every polynomial of degree n has exactly n
(real and) complex roots, counted with multiplicity.

Equivalently, if f (x) = xn + an−1 xn−1 + · · ·+ a1 x + a0 is a polynomial of degree
n, then f factors as

f (x) = (x −λ1)(x −λ2) · · · (x −λn)

for (not necessarily distinct) complex numbers λ1,λ2, . . . ,λn.

Degree-2 Polynomials. The quadratic formula gives the roots of a degree-2 poly-
nomial, real or complex:

f (x) = x2 + bx + c =⇒ x =
−b±

p
b2 − 4c

2
.

For example, if f (x) = x2 −
p

2x + 1, then

x =
p

2±
p
−2

2
=
p

2
2
(1± i) =

1± i
p

2
.

Note that if b, c are real numbers, then the two roots are complex conjugates.

A complex number z is real if and only if z = z. This leads to the following
observation.

If f is a polynomial with real coefficients, and if λ is a complex root of f , then
so is λ:

0= f (λ) = λn + an−1λn−1 + · · ·+ a1λ+ a0

= λn + an−1λ
n−1 + · · ·+ a1λ+ a0 = f

�

λ
�

.

Therefore, complex roots of real polynomials come in conjugate pairs.

Degree-3 Polynomials. A real cubic polynomial has either three real roots, or one
real root and a conjugate pair of complex roots.

For example, f (x) = x3 − x = x(x − 1)(x + 1) has three real roots; its graph
looks like this:
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On the other hand, the polynomial

g(x) = x3 − 5x2 + x − 5= (x − 5)(x2 + 1) = (x − 5)(x + i)(x − i)

has one real root at 5 and a conjugate pair of complex roots ±i. Its graph looks
like this:



Appendix B

Fields and Vector Spaces

In this Appendix we give a brief introduction to the axiomatic theory of fields,
which underlies the notion of abstract vector spaces.

We first give the modern algebraic definition of fields, of which the real and
complex numbers are the main examples.

Definition. A commutative ring is tuple (Λ,+, ·,−, 0, 1) consisting of a set Λ, two
binary operations + and · of type Λ×Λ→ Λ, a unary operation − : Λ→ Λ, and
two constants 0,1 ∈ Λ, satisfying the following laws, for all λ,µ,ν ∈ Λ:

(λ+µ) + ν= λ+ (µ+ ν) (a1)

λ+ 0= λ (a2)

λ+µ= µ+λ (a3)

λ+ (−λ) = 0 (a4)

(λµ)ν= λ(µν) (m1)

λ1= λ (m2)

λµ= µλ (m3)

λ(µ+ ν) = λµ+λν (am)

A field is a commutative ring in which every nonzero element λ has an inverse,
i.e., an element λ−1 satisfying λλ−1 = λ−1λ= 1.

The operation + is called the addition, the operation · is called the multiplica-
tion, and the operation − is called the negation operation of the field. As usual,
we leave out the dot when writing multiplications. To be super precise, we would
have to decorate the operations and the constants with Λ to disambiguate them
from the usual ones, as in (Λ,+Λ, ·Λ,−Λ, 0Λ, 1Λ). The laws (a1) and (m1) are called
the associative laws, the laws (a2) and (m2) concern the neutral elements 0 and
1, the laws (a3) and (m3) are called the commutative laws, and the law (am) is
called the distributive law.

As a consequence of the laws, we can prove other identities, such as 1λ = λ,
(λ + µ)ν = λν + µν, and 0λ = 0, for all λ,µ,ν ∈ Λ. For instance, the last one
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follows from the calculation

0λ= (0+ 0)λ= 0λ+ 0λ,

together with (a4).
It is possible to consider many variations of these axioms, to give possibly non-

commutative rings, rings without units (1), skew-fields, etc. But all the fields laws
are familiar from real number arithmetic in R, and they also hold for complex
numbers C (Appendix A), as the reader is invited to check. The point of introducing
the notion of a field is that all the theorems of linear algebra hold over any field
and that there are many other examples:

• The rational numbers Q: the reals numbers of the form p/q where q ̸= 0.

• More general number fields Q ⊆ Λ ⊆ C, for example Q(
p

2), the smallest
subfield of C containing a square root of 2, or the smallest subfield of C
containing a solution to some polynomial equation with rational coefficients,
etc. (This way leads to Galois theory.)

• Finite fields Fpn with pn elements, where p is a prime number. As an example,
we can describe a field F4 with 4 elements 0,1, a, a−1, where 1+ 1 = 0 and
a2 = a+ 1.

• The field of rational functions Λ(X ) over a field Λ consists of rational func-
tions, i.e., those of the form P/Q, where P,Q are polynomials with coeffi-
cients from Λ and Q ̸= 0.

• etc.

We can now give the definition of abstract vector spaces.

Definition. A vector space over the field Λ is a tuple (V,+, ·,−, 0) consisting of
a set V , binary operations + : V × V → V and · : Λ× V → V , a unary operation
− : V → V , and a constant 0 ∈ V , satisfying the following laws, for all x , y, z ∈ V
and λ,µ ∈ Λ:

(x + y) + z = x + (y + z) (a1)

x + 0= x (a2)

x + y = y + x (a3)

x + (−x) = 0 (a4)

(λµ)x = λ(µx) (v1)

λ(x + y) = λx +λy (v2)

(λ+µ)x = λx +µx (v3)

1x = x (v4)
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The operation + is again called the addition (of vectrs), but the operation · is
called the scalar multiplication; again, it is usually left out of notations. These
operations allow us to produce linear combinations in a meaningful way, and we
can prove all the theorems of linear algebra for these, at least when they are finite
dimensional, i.e., admit a finite ordered basis, as defined in Section 3.4. The
standard examples are the spaces Λn of column vectors of length n, for any n ∈ N.
Other examples:

• Vector subspaces (Section 3.3) of any vector space.

• The set of polynomials

Λ[X ] = { anX n + · · ·+ a1X + a0 | ai ∈ Λ }

with the obvious addition and scalar multiplications.

• The set of m× n matrices over Λ (Section 2.4).

• The set of linear maps f : V → W between two vector spaces over Λ (Sec-
tion 4.3).

• The quotient space V/U of a vector space V with respect to a subspace U:
This is obtained a the quotient of V by the equivalence relation ∼ defined
by x ∼ y if and only if y − x ∈ U . The operations are inhered from V in the
sense that λ[x] = [λx] and [x] + [y] = [x + y] are well defined.

• etc.

To read more about abstract algebra, including the theory of commutative rings
and fields, and linear algebra over fields, see most undergraduate algebra text-
books, e.g., A Survey of Modern Algebra by Birkhoff and Mac Lane.
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Appendix C

Notation

The following table defines the notation used in this book. Page numbers or ref-
erences refer to the first appearance of each symbol.

Symbol Description Page

0 The number zero 2
R The real numbers 2
Rn Real n-space 2
�1

2

�

A vector 6
0 The zero vector 6
Span{v1, v2, . . . , vk} Span of vectors 16
{x | condition} Set builder notation 16
Ri Row i of a matrix 33
m× n matrix Size of a matrix 48
Col(A) Column space 93
Nul(A) Null space 93
dim V Dimension of a subspace 99
rank(A) The rank of a matrix 115
nullity(A) The nullity of a matrix 115
T : Rn→ Rm transformation with domain Rn and codomain Rm 128
IdRn Identity transformation 130
rank(T ) The rank of a linear transformation 155
nullity(T ) The nullity of a linear transformation 155
e1, e2, . . . Standard coordinate vectors 155
In n× n identity matrix 156
ai j The i, j entry of a matrix 165
0 The zero transformation 174
0 The zero matrix 175
A−1 Inverse of a matrix 177
T−1 Inverse of a transformation 184
C[T]B The (B,C)-matrix of a linear transformation 195
det(A) The determinant of a matrix 200

(Continued on next page)

455



456 APPENDIX C. NOTATION

Symbol Description Page

AT Transpose of a matrix 211
Ai j Minor of a matrix 219
Ci j Cofactor of a matrix 219
adj(A) Adjugate matrix 230
vol(P) Volume of a region 236
vol(A) Volume of the parallelepiped of a matrix 237
T (S) The image of a region under a transformation 244
Tr(A) Trace of a matrix 268
Re(v) Real part of a complex vector 323
Im(v) Imaginary part of a complex vector 323
x · y Dot product of two vectors 381
x ⊥ y x is orthogonal to y 385
W⊥ Orthogonal complement of a subspace 388
Row(A) Row space of a matrix 394
xW Orthogonal projection of x onto W 397
xW⊥ Orthogonal part of x with respect to W 397
C The complex numbers 447
z Complex conjugate 448
Re(z) Real part of a complex number 448
Im(z) Imaginary part of a complex number 448



Appendix D

Concept Library

ConceptsThis concept library. What it means for an equation to be linear. The
set of all solutions of a system of equations. When a system of equations has no
solutions.
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Appendix E

Hints and Solutions to Selected
Exercises
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Appendix F

GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://www.fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

0. PREAMBLE The purpose of this License is to make a manual, textbook, or
other functional and useful document “free” in the sense of freedom: to assure ev-
eryone the effective freedom to copy and redistribute it, with or without modifying
it, either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being con-
sidered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS This License applies to any manual or
other work, in any medium, that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. Such a notice grants
a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You
accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.
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A “Modified Version” of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or authors
of the Document to the Document’s overall subject (or to related matters) and con-
tains nothing that could fall directly within that overall subject. (Thus, if the Doc-
ument is in part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical connection
with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are desig-
nated, as being those of Invariant Sections, in the notice that says that the Docu-
ment is released under this License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant. The Document may
contain zero Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is re-
leased under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public, that is
suitable for revising the document straightforwardly with generic text editors or
(for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text for-
matters. A copy made in an otherwise Transparent file format whose markup, or
absence of markup, has been arranged to thwart or discourage subsequent mod-
ification by readers is not Transparent. An image format is not Transparent if
used for any substantial amount of text. A copy that is not “Transparent” is called
“Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTeX input format, SGML or XML using a
publicly available DTD, and standard-conforming simple HTML, PostScript or PDF
designed for human modification. Examples of transparent image formats include
PNG, XCF and JPG. Opaque formats include proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page itself, plus such fol-
lowing pages as are needed to hold, legibly, the material this License requires to
appear in the title page. For works in formats which do not have any title page
as such, “Title Page” means the text near the most prominent appearance of the
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work’s title, preceding the beginning of the body of the text.
The “publisher” means any person or entity that distributes copies of the Doc-

ument to the public.
A section “Entitled XYZ” means a named subunit of the Document whose title

either is precisely XYZ or contains XYZ in parentheses following text that trans-
lates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”,
or “History”.) To “Preserve the Title” of such a section when you modify the Doc-
ument means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers are
considered to be included by reference in this License, but only as regards dis-
claiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING You may copy and distribute the Document in any
medium, either commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies to the Doc-
ument are reproduced in all copies, and that you add no other conditions what-
soever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute
a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY If you publish printed copies (or copies in media that
commonly have printed covers) of the Document, numbering more than 100, and
the Document’s license notice requires Cover Texts, you must enclose the copies
in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts
on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy
these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should
put the first ones listed (as many as fit reasonably) on the actual cover, and con-
tinue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along with
each Opaque copy, or state in or with each Opaque copy a computer-network lo-
cation from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document,
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free of added material. If you use the latter option, you must take reasonably pru-
dent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

4. MODIFICATIONS You may copy and distribute a Modified Version of the Doc-
ument under the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified Version fill-
ing the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of
the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use the
same title as a previous version if the original publisher of that version gives
permission.

B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version, as
the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
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I. Preserve the section Entitled “History”, Preserve its Title, and add to it an
item stating at least the title, year, new authors, and publisher of the Modi-
fied Version as given on the Title Page. If there is no section Entitled “History”
in the Document, create one stating the title, year, authors, and publisher of
the Document as given on its Title Page, then add an item describing the
Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access
to a Transparent copy of the Document, and likewise the network locations
given in the Document for previous versions it was based on. These may be
placed in the “History” section. You may omit a network location for a work
that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the
Title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered part
of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be in-
cluded in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict
in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties — for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.
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The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS You may combine the Document with other doc-
uments released under this License, under the terms defined in section 4 above
for modified versions, provided that you include in the combination all of the In-
variant Sections of all of the original documents, unmodified, and list them all
as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are mul-
tiple Invariant Sections with the same name but different contents, make the title
of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the
various original documents, forming one section Entitled “History”; likewise com-
bine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedi-
cations”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS You may make a collection consisting of
the Document and other documents released under this License, and replace the
individual copies of this License in the various documents with a single copy that
is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Docu-
ment or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an “aggregate” if
the copyright resulting from the compilation is not used to limit the legal rights of
the compilation’s users beyond what the individual works permit. When the Doc-
ument is included in an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in
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electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

8. TRANSLATION Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from their copy-
right holders, but you may include translations of some or all Invariant Sections
in addition to the original versions of these Invariant Sections. You may include
a translation of this License, and all the license notices in the Document, and any
Warranty Disclaimers, provided that you also include the original English version
of this License and the original versions of those notices and disclaimers. In case
of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or
“History”, the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

9. TERMINATION You may not copy, modify, sublicense, or distribute the Doc-
ument except as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense, or distribute it is void, and will automatically terminate
your rights under this License.

However, if you cease all violation of this License, then your license from a par-
ticular copyright holder is reinstated (a) provisionally, unless and until the copy-
right holder explicitly and finally terminates your license, and (b) permanently, if
the copyright holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated per-
manently if the copyright holder notifies you of the violation by some reasonable
means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to 30
days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses
of parties who have received copies or rights from you under this License. If your
rights have been terminated and not permanently reinstated, receipt of a copy of
some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may
publish new, revised versions of the GNU Free Documentation License from time
to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/
copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License “or any later
version” applies to it, you have the option of following the terms and conditions

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/
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either of that specified version or of any later version that has been published (not
as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation. If the Document specifies that a proxy
can decide which future versions of this License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to choose that
version for the Document.

11. RELICENSING “Massive Multiauthor Collaboration Site” (or “MMC Site”)
means any World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A public wiki that
anybody can edit is an example of such a server. A “Massive Multiauthor Collab-
oration” (or “MMC”) contained in the site means any set of copyrightable works
thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license
published by Creative Commons Corporation, a not-for-profit corporation with a
principal place of business in San Francisco, California, as well as future copyleft
versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part,
as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and
if all works that were first published under this License somewhere other than
this MMC, and subsequently incorporated in whole or in part into the MMC, (1)
had no cover texts or invariant sections, and (2) were thus incorporated prior to
November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009, provided the
MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents To use this License
in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) YEAR YOUR NAME. Permission is granted to copy, dis-
tribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace
the “with. . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.
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If you have Invariant Sections without Cover Texts, or some other combination of
the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software li-
cense, such as the GNU General Public License, to permit their use in free software.
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(B,C)-matrix
definition of, 195
worked example, 196

B-coordinates
computing

row reduction, 113
with respect to an orthogonal

basis, 419
definition of, 108
informally, 108
labeling points, 109
nonstandard grid, 110

Algebraic multiplicity
and diagonalizability, 306
and geometric multiplicity, 306
definition of, 305
equals one, 306
of similar matrices, 309

Approximate solution, see
Least-squares

attractor, 358
Augmented matrix, see Matrix

Basis
and orthogonal projection, 406
basis theorem, 105
coordinates with respect to, see

B-coordinates
definition of, 98
infinitely many, 99
making orthogonal, 421
of Rn, 100
of a column space, 102
of a null space, 104

of a span, 103
span of an orthogonal set, 415
uniqueness with respect to, 107

Bayes’ Rule
conditional probability, 345

Best-fit problem, 432
best-fit line, 432
general setup, 440

Block Diagonalization Theorem, 332

Characteristic polynomial
and eigenvalues, 265
definition of, 264
factoring by hand, 270
form of, 268
of a 2× 2 matrix, 268
of similar matrices, 286

Codomain, see Transformation
Cofactor, see Matrix
Color space, 6
Column rank, see Rank
Column Space

orthogonal complement of, 390
Column space

and invertibility, 263
and rank, see Rank
basis of, see Basis
definition of, 93
is a subspace, 93
is row space of transpose, 394
of an orthogonal projection, 410
orthogonal complement of, 394
range of a transformation, 132
versus the solution set, 69

Column span, see Column space

471
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Column vector, 6
Complex conjugation, see Complex

numbers
Complex eigenvalue

2× 2 matrices
and rotation-scaling matrices,

322
and rotation-scaling matrices,

computing, 324
different rotation-scaling

matrices, 328
dynamics of, 328, 330, 331
geometry of, 321

conjugate pairs, 316
existence of, 313

Complex numbers
absolute value, 448
arithmetic of, 448
conjugation, 448
definition of, 447
real and imaginary parts of, 448

vectors, 323
Consistent, see System of linear

equations
Vector equation, 16

Cramer’s rule, 231
and computing inverses, 230

Determinant
alternative defining properties

of, 217
and column operations, 214
and computing inverses, 230
and powers of matrices, 210
and row operations, 200
and volumes, 236
computation of

cofactor expansion, 219
row reduction, 202

defining properties of, 200
existence and uniqueness of, 206
identity matrix, 200
invertibility property, 207, 263
methods of computation, 229
multilinearity property, 215

multiplicativity property, 208
and volumes, 247

of a 2× 2 matrix, 178, 204, 225
of a 3× 3 matrix, 226
of similar matrices, 286
properties of, 218
transpose property, 212

Diagonal
see Matrix, 204

Diagonalizability
algebraic-geometric multiplicity

criterion, 306
criterion, 292
criterion for similarity, 311
definition of, 290
diagonal matrices, 290
distinct eigenvalues, 292
geometry of, 301
is unrelated to invertibility, 300
of 2× 2 matrices, 308
of 3× 3 matrices, 308
of a projection matrix, 410
order of eigenvalues, 293
powers of, 291
projection, 298
recipe, 297
shear, 297
similar matrices, 290

Difference equation, see Matrix
difference equation

Dilation, 134
Dimension

definition of, 99
of a column space, 115
of a kernel, 155
of a null space, 115
of a solution set, 63, 69
of an image, 155
of an orthogonal complement,

393
Discrete dynamical system, see

Linear discrete dynamical
system

Discrete dynamical systems
calculating state at time t, 356
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Domain, see Transformation
Dot product

and angles, 387
and distance, 383
and length, 382
definition of, 381
properties of, 382

Eigenspace
and the null space, 263
computation, 263
definition of, 260
is a solution set, 259
is a subspace, 260
of a projection matrix, 410
of similar matrices, 287

Eigenvalue
algebraic multiplicity of, see

Algebraic multiplicity
and diagonalizability, 292
and invertibility, 263
and stochastic matrices, 367
and the characteristic

polynomial, see
Characteristic polynomial

complex, see Complex eigenvalue
definition of, 250
eigenvector for, 250
geometric multiplicity of, see

Geometric multiplicity
maximum number of, 258
of a projection matrix, 410
of a triangular matrix, 269
of similar matrices, 286
zero, 263

Eigenvector
and collinearity, 252
and diagonalizability, 292
and stochastic matrices, 367
computation, 263

trick for 2× 2 matrices, 316
definition of, 250
eigenvalue for, 250
linear independence of, 258
of a projection matrix, 410

of similar matrices, 287
Elimination method, 32
Equation of linear dependence, see

Linear independence
Expectation

random variable, 347
sum of random variables

product of independent
random variables, 347

Field
definition of, 451

Free variable, 45
Function, see Transformation
Fundamental theorem of algebra,

449

Gaussian elimination, see Row
reduction

Geometric multiplicity
and algebraic multiplicity, 306
and diagonalizability, 306
definition of, 305
of similar matrices, 309

Google PageRank
Google Matrix, 375

eigenvector of, 376
importance matrix, 373

eigenvector of, 374
importance rule, 372

Gram–Schmidt Process, 421
detecting linear dependence,

424
Graph

cycle, 339
definitions of, 336
degree, 338
Eulerian circuit theorem, 340
in-degree, 338
isomorphism, 340
matrix multiplication and walks,

341
out-degree, 338
path, 339
simple, 336
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trail, 339
undirected, 336
walk, 339

Grassmann’s formula, 118

Homogeneous, see System of linear
equations

Identity matrix
and matrix multiplication, 175
and standard coordinate vectors,

156
as a matrix transformation, 134
definition of, 156
determinant of, 200
similarity, 274

Identity transformation
and composition, 164
definition of, 130

Image
and rank, see Rank
definition of, 155

Imaginary number, see Complex
numbers

Imaginary part, see Complex
numbers

Implicit equation, 30, 46
Inconsistent, see System of linear

equations
Vector equation, 16

Increasing span criterion, see Linear
independence

Independence
events, 346
random variables, 347

Inhomogeneous, see System of linear
equations

Initial condition, 350
intersection of subspaces

definition of, 118
Invertible matrix

and invertible transformation,
188

basic facts, 177
computation

2× 2 case, 178
in general, 179
using Cramer’ rule, 230

definition of, 177
determinant of, 207, 263
inverse of, 177
invertible matrix theorem, 263
solving linear systems with, 182

Invertible matrix theorem, 190, 263
Invertible transformation

and invertible matrices, 188, 263
definition of, 184
one-to-one and onto, 187

Kernel
definition of, 155

Least-squares
and Ax = bCol(A), 426
computation of

complicated matrix formula,
430

Projection Formula, 432
row reduction, 427, 428

definition of, 426
picture of, 426
uniqueness of, 430

Line
dimension-1 solution set, 63, 69
geometric definition of, 27
number line, 2
orthogonal projection onto, 400,

416
parametric form of, 30

Linear combination
collinear vectors, picture of, 12
definition of, 11
single vector, picture of, 12
two vectors, picture of, 11

Linear dependence, see Linear
independence

Linear dependence relation, see
Linear independence

Linear Discrete dynamical system,
350
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Linear equation
definition of, 24
system of, see System of linear

equations
Linear Independence

basic facts, 74
equation of linear dependence,

71
increasing span criterion, 76
linear dependence relation, 71
pictures of, 77
verifying, 74
wide matrices, 74

Linear independence
and determinants, 207
and invertibility, 263
definition of, 71
of an orthogonal set, 415
verifying

with Gram–Schmidt, 424
Linear transformation

addition of, see Transformation
and volumes, see Matrix

transformation
are matrix transformations, 157
basic facts, 150
composition of, see

Transformation
and matrix multiplication, 169
linearity of, 169

definition of, 150
dictionary, 157
invertible, see Invertible

transformation
nullity of, see Nullity
rank of, see Rank
scalar multiplication of, see

Transformation
standard matrix of, 157

orthogonal projection, 408
when defined by a formula, 153

Lower-triangular
see Matrix, 204

Matrix

addition of, 174
as a function, see Matrix

transformation, 122
augmented, 33
cofactor of, 219

and determinants, 219
sign of, 219

definition of, 33
determinant of, see Determinant
diagonal entries of, 204
inverse of, see Invertible matrix
invertible, see Invertible matrix
lower-triangular, 204

determinant of, 205
eigenvalues of, 269

minor of, 219
multiplication, see Matrix

multiplication
nullity of, see Nullity
parallelepiped determined by,

236
product with vector, see

Matrix-vector product
projection, see Orthogonal

projection, standard matrix
of

rank of, see Rank
rotation-scaling, see

Rotation-scaling matrix
scalar multiplication of, 174
similar, see Similarity
size of, 48
stochastic, see Stochastic matrix
trace of, 268

similar matrices, 286
transpose of, 211

and products, 212
determinant of, 212

upper-triangular, 204
determinant of, 205
eigenvalues of, 269

Matrix difference equation, 350
Matrix equation

always consistent, 55
and invertibility, 263
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definition of, 49
equivalence with vector

equation, 49
solving with the inverse matrix,

182
spans and consistency, 52

Matrix multiplication
and composition of

transformations, 169
and the matrix-vector product,

166
associativity of, 175
caveats, 168
definition of, 166
determinant of, 208
inverse of, 177
noncommutativity of, 168
order of operations, 169
powers, 166

and diagonalizability, 291
and similarity, 275

properties of, 175
row-column rule, 167
size of matrices, 166

Matrix transformation
addition of, see Transformation
and volumes, 244
codomain of, 132
composition of, see Linear

transformation, see
Transformation

definition of, 131
dictionary, 157
domain of, 132
invertible, see Invertible

transformation
linearity of, 150
of R2, 134
one-to-one criteria, 139
onto criteria, 144
range of, 132
scalar multiplication of, see

Transformation
tall matrices, 146
wide matrices, 142

Matrix-vector product
and matrix multiplication, 166
definition of, 48
row-column rule, 51
with standard coordinate

vectors, 156
Minor, see Matrix
Multiplicity

algebraic, see Algebraic
multiplicity

geometric, see Geometric
multiplicity

Nontrivial solution, see System of
linear equations

Null space
and invertibility, 263
basis of, see Basis
computing, 96
definition of, 93
is a solution set, 95
is a subspace, 93
is the 0-eigenspace, 263
of an orthogonal projection, 410
orthogonal complement of, 394

Nullity, 115, 155
rank theorem, 116

One-to-one
and invertibility, 263
criteria for matrix

transformations, 139
definition of, 137
equivalent formulations, 137
finding two vectors with the

same image, 142
functions of one variable, 138
negation of, 138
square matrices, 149
versus onto, 147
wide matrices, 142

Onto
and invertibility, 263
criteria for matrix

transformations, 144
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definition of, 143
equivalent formulations, 143
finding a vector not in the range,

146
functions of one variable, 144
negation of, 143
square matrices, 149
tall matrices, 146
versus one-to-one, 147

Origin, 2
Orthogonal complement

basic facts, 393
computation of, 390
definition of, 388
dimension of, 393
of a column space, 390, 394
of a null space, 394
of a row space, 394
of a span, 390, 394
orthogonal complement of, 393
pictures of, 388
system of linear equations, 390

Orthogonal decomposition, see
Orthogonal projection

Orthogonal projection
and B-coordinates, 419
as a transformation, 407
composed with itself, 407
computation of

complicated matrix formula,
406

Projection Formula, 416
row reduction, 399, 402

definition of, 397
distance from, 398
existence of, 397
is the closest vector, 398
linearity of, 407
of a vector in W , 398
of a vector in W⊥, 399
onto a column space, 426
onto a line, 400, 416
properties of, 407
range of, 407
standard matrix of, 408

column space of, 410
complicated matrix formula,

410
diagonalizability of, 410
eigenvalues of, 410
eigenvectors of, 410
noninvertibility of, 410
null space of, 410
properties of, 410
square of, 410

Orthogonal set
and B-coordinates, 419
and least squares, 432
definition of, 413
linear independence of, 415
making orthonormal, 415
necessity of, 420
orthonormality of, 413

standard coordinate vectors,
413

producing from a basis, 421
Orthogonality

and the Pythagorean theorem,
385

definition of, 385
zero vector, 385

Orthonormal set, see Orthogonal set

Parallelepiped
definition of, 235
flat, 236
parallelogram, 235

area of, 239
volume of, 236

Parallelogram, see Parallelepiped
Parameterized equation, 46
Parametric form, 30, 45
Parametric vector form

of a homogeneous equation, 59,
60

of an inhomogeneous equation,
67

particular solution, 67
Particular solution, see Parametric

vector form
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Perron–Frobenius theorem, 367
Pivot, 36

pivotal theorem, 83
Pivot position, 41
Plane

x y-plane, 3
dimension-2 solution set, 63, 69
geometric definition of, 27
parametric form of, 31

Point
distance between, 383

Polynomial
characteristic, see Characteristic

polynomial
complex roots, 449
conjugate roots, 449
cubic, 449
factoring by hand, 270
quadratic, 449
rational roots, 270

Power of a matrix, see Matrix
multiplication

Probability
basic laws of probability, 344

Projection
diagonalizability of, 298

Projection Formula, 416
Projection matrix, see Orthogonal

projection, standard matrix
of

QR codes, 7
Quadratic formula, 449

Range, see Transformation
Rank, 115, 155

rank theorem, 116
row and column, 395

Rational Root Theorem, 270
Real n-space, 2

as a subspace of itself, 88
point of, 2

Real numbers R, 2
Real part, see Complex numbers
Reduced row echelon form, 37

and invertibility, 263
Reflection

eigenvectors of, 253
in general, 412
over the y-axis, 134

Ring
definition of, 451

Rotation
composition of, 170
counterclockwise by 90◦, 134
non-diagonalizability of, 299

Rotation-scaling matrix
and complex eigenvalues, 322
computing the angle, 321
definition of, 318
structure of, 318

Rotation-Scaling Theorem, 322
Row echelon form, 36
Row equivalence, 35
Row operations, 33

and determinants, 200
replacement, 33
scaling, 33
swap, 33

Row rank, see Rank
Row reduction

algorithm, 39
computing determinants, 202
picture of, 41

Row replacement, see Row
operations, replacement

Row space
definition of, 394
is column space of transpose,

394
orthogonal complement of, 394

Row vector, 6, see Vector

saddle point, 358
Scooter rental, 366, 370
Set builder notation, 16
Shear

in the x-direction, 134
multiplicities, 305
non-diagonalizability of, 297
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Similarity
action on a vector, 277
and eigenspaces, 287
and eigenvalues, 286
and eigenvectors, 287
and multiplicities, 309
and powers, 275
and the characteristic

polynomial, 286
and the determinant, 286
and the trace, 286
definition of, 273
equivalence relation, 274
geometry of, 276
identity matrix, 274
of 2× 2 matrices, 331
of diagonal matrices, 312
of diagonalizable matrices, 311
to a diagonal matrix, see

Diagonalizability
worked example, 277

Solution, see System of linear
equations

Solution set
definition of, 24
of a homogeneous system is a

null space, 95
of a homogeneous system is a

span, 60
picture of, 26
size of, 47
translate of a span, 67
versus the column space, 69

Space
R3, 3
color space, 6
dimension-3 solution set, 63, 69

Span
basis of, see Basis
definition of, 16
Interpretation in terms of

consistency, 17
is a subspace, 92
orthogonal complement of, 390,

394

pictures of, 18
Standard coordinate vectors

and matrix columns, 156
are unit vectors, 384
columns of the identity matrix,

156
definition of, 155
orthonormality of, 413
picture of, 156

Standard matrix, see Linear
transformation

Steady state, 364, see Stochastic
matrix

Stochastic matrix
(normalized) steady state of, 367
definition of, 365
eigenvalues of, 367
long-term behavior of, 367
picture of, 370, 372
steady state of

computing, 368
sum of entries of vector, 366

Subset
definition of, 87
set builder notation, 16
versus subspace, 90

Subspace
and spans, 92
definition of, 87
is a span, 92
orthogonal complement of, see

Orthogonal complement
real n-space, 88
versus subset, 90
writing as column or null space,

97
zero, 88

sum of subspaces
definition of, 118

Superposition principle, 151
System of linear equations

consistent, 26
picture of, 16
span criterion, 52

definition of, 24
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four ways of writing, 50
homogeneous, 58

trivial solution, 58
inconsistent, 26

picture of, 17
RREF criterion, 42

inhomogeneous, 58
nontrivial solution, 58

and free variables, 58
and invertibility, 263
finding, 62

number of solutions of, 47
parametric form of, see

Parametric form
parametric vector form of, see

Parametric vector form
particular solution of, see

Parametric vector form
solution of, 24
solving with the inverse matrix,

182
trivial solution, 58

and invertibility, 263

Tall matrix, see Matrix
transformation

tend to infinity, 362
Trace, see Matrix
Transformation

addition of, 173
as a machine, 128
associated to a matrix, see Matrix

transformation
codomain of, 128
composition of, 162

noncommutativity of, 164
order of operations, 169

definition of, 128
domain of, 128
identity, see Identity

transformation
invertible, see Invertible

transformation
linear, see Linear transformation
of one variable, 129

of several variables, 130
one-to-one, see One-to-one
onto, see Onto
range of, 128
scalar multiplication of, 173

Transpose, see Matrix
Trivial solution, see System of linear

equations

Unit cube, 235
Unit vector

and orthonormality, 413
definition of, 384
in the direction of a vector, 384
standard coordinate vectors, 384

Upper-triangular
see Matrix, 204

Vector
addition, 8

parallelogram law, 9
angle between, 387
based, 5
Column, 6
definition of, 4
distance between, 383
length of, 382
linear combination of, see Linear

combination
orthogonal, see Orthogonality
physical interpretation of, 5
product with matrix, see

Matrix-vector product
real and imaginary parts of, 323
Row, 6
row vector, 51

product with column vector, 51
scalar multiplication, 9

picture of, 10
subtraction

picture of, 10
unit vector, see Unit vector
unit vector in the direction of,

384
Vector equation
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definition of, 14
equivalence with matrix

equation, 49
Vector space

definition of, 452
Volume

and length, 239

of a parallelepiped, 236
of a region, 244
signed, 242

Wide matrix, see Linear
independence, see Matrix
transformation
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